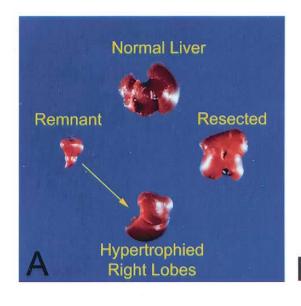
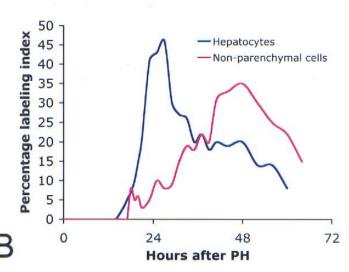


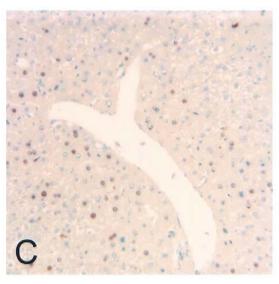
Cross-talk of HGF and IL-6 in liver regeneration

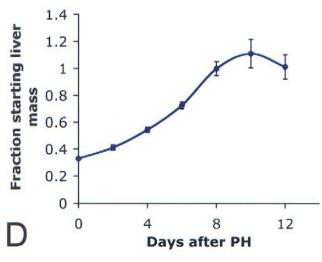
Andreas Hoppe Institut für Biochemie Charité – Universitätsmedizin Berlin


Outline

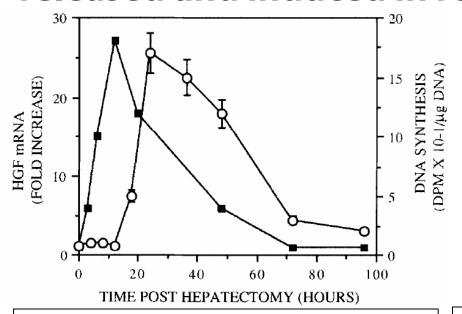


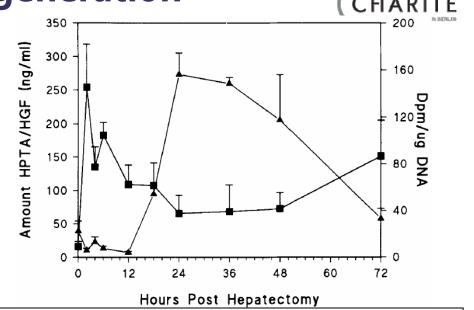
- o Role of HGF and IL-6 in liver regeneration
 - liver regeneration
 - HGF as regeneration driver
 - IL-6 as regeneration unlocker
- o Cross-talk categorized and measured by indicators
- o ExTILAR
- o Hepcidin story example of a highlighted gene


Liver regeneration after 2/3 hepatectomy



- (B) Percentage of 3Hthymidine labeled liver cells at timepoints after two-thirds PH.
- (C) BrdU incorporation into proliferating rat hepatocytes after CCl4 treatment

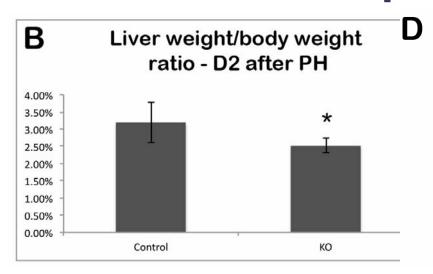


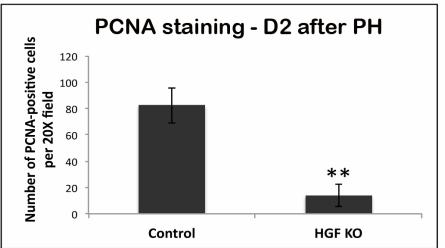


Koniaris et al. (2003) *Liver regeneration*. Journal of the American College of Surgeons, 197(4), 634-659.

HGF hepatocellular growth factor=hepatopoietin A=scatter factor released and induced in regeneration

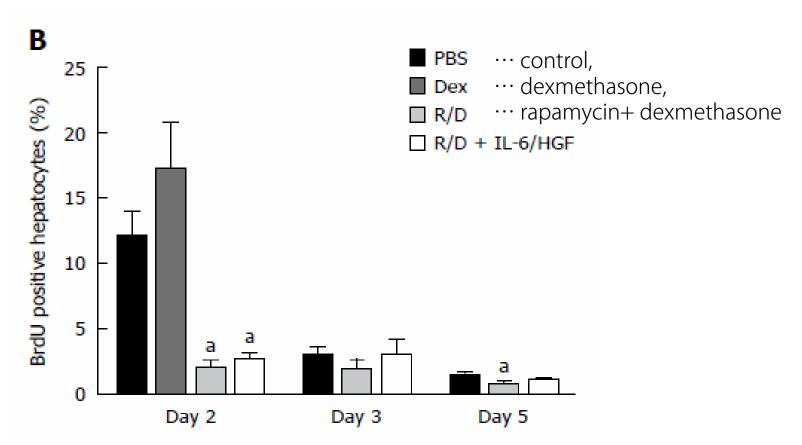
Zarnegar et al. (1991) Expression of Hepatocyte Growth Factor mRNA in regenerating rat liver after partial hepatectomy. Biochem. Biophys. Res. Comm. 25(7): 585-592.


Lindroos et al. (1991) Hepatocyte growth factor (hepatopoietin A) rapidly increases in plasma before DNA synthesis and liver regeneration stimulated by partial hepatectomy and carbon tetrachloride administration. Hepatology 13:743-749.


- HGF is deposited in the extracellular matrix
- It is released by any type of injury and by partial hepatectomy
- o It is induced in hepatocytes and stellate cells
- o Excreted from stellate and sinusoidal endothelial cells

Michalopoulus (2007) Liver Regeneration. J. Cell. Physiol. 213: 286-300.

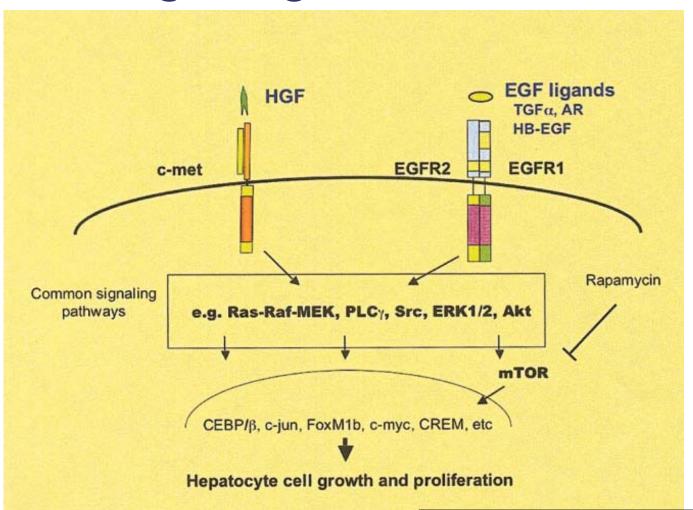
HGF essential for proliferation


Liver regeneration is compromised in HGF KO mice after CCl4 and PH due to a decrease in HGF

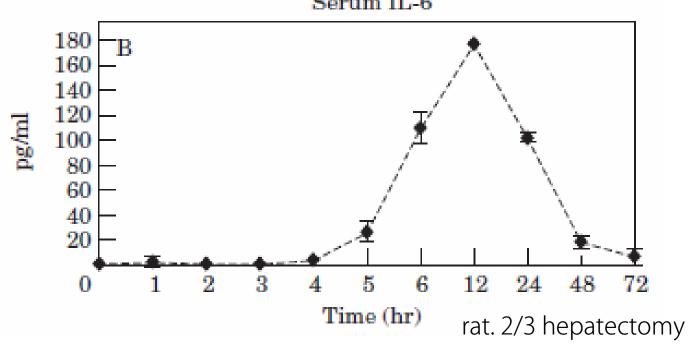
- (B) Graph of liver weight to body weight ratios after CCl4/PH shows a significant decrease in HGF KOs at D2. (*P,0.05)
- (D) PCNA IHC on livers harvested at D2 after PH in control and HGF KO animals treated with CCl4
- o PCNA ··· Proliferating-Cell-Nuclear-Antigen

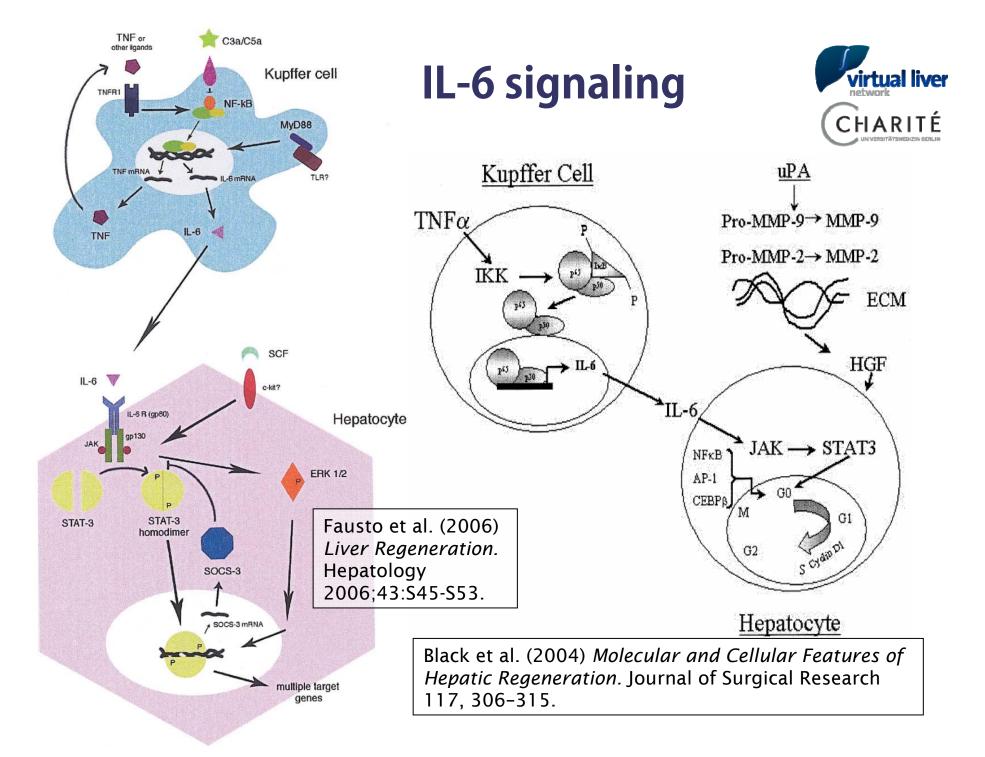
Nejak-Bowen et al. (2013) Conditional Genetic Elimination of Hepatocyte Growth Factor in Mice Compromises Liver. Regeneration after Partial Hepatectomy. PLoS ONE 8(3): e59836.

mTOR signaling essential for proliferation

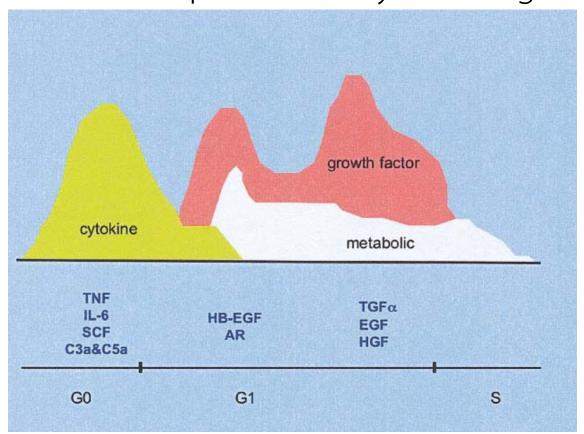


Fouraschen et al (2013) mTOR signaling in liver regeneration: Rapamycin combined with growth factor treatment. World J Transplant; 3(3): 36-47.

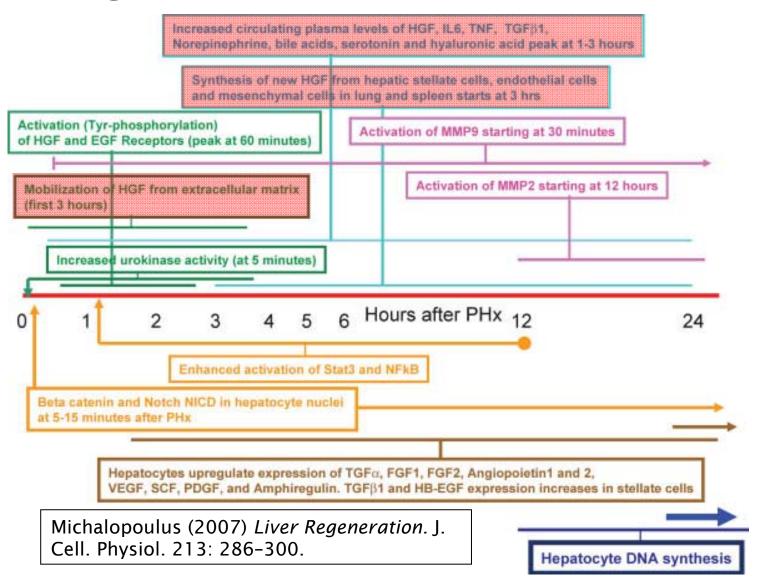

HGF signaling

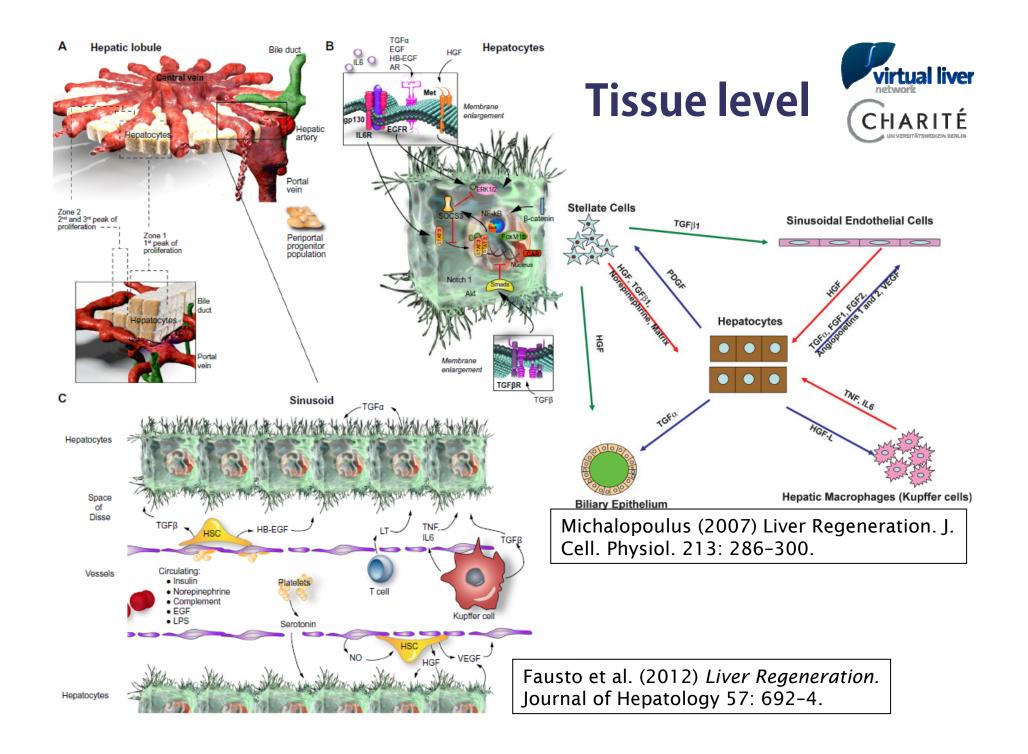

Fausto et al. (2006) Liver Regeneration. Hepatology 2006;43:S45-S53.

IL-6 (interleukin 6) induced in regeneration Serum IL-6


Fulop et al. (2001) Hepatic regeneration induces transient acute phase reaction: systemic elevation of acute phase reactants and soluble cytokine receptors. Cell biology international 25(7): 585-592.

Fausto model of regeneration control


o Scheduled protocol of cytokine signals

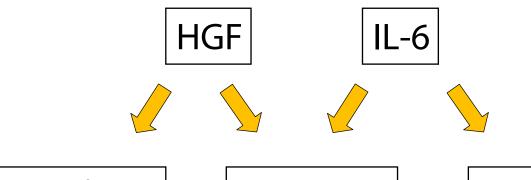


Fausto et al. (2006) *Liver Regeneration*. Hepatology 2006;43:S45-S53.

Cytokine signaling program in regeneration

virtual liver
rietwork

CHARITÉ


UNIVERSITÄTSMEDIZIB BERLIB

- o In hepatocyte cell culture experiments:
 - HGF alone more or less mitogenic
 - IL-6 alone not mitogenic
 - IL-6 and HGF combined strongly mitogenic
- o Both HGF and IL-6 polyspecific
 - IL-6
 - o pro-inflammatory cytokine
 - o anti-inflammatory myokine
 - HGF
 - o growth signal for epithelial, endothelial cells, haemopoietic progenitor cells.
 - o cell motility
 - o morphogenic factor, in myogenesis, wound healing
- What specific effects occur if HGF and IL-6 acting at the same time?

Michalopoulus (2007) Liver Regeneration. J. Cell. Physiol. 213: 286-300.

Disjoint vs. common signaling

mTOR, Ras-Raf-MEK

ERK1/2, Akt

STAT3

Synergy

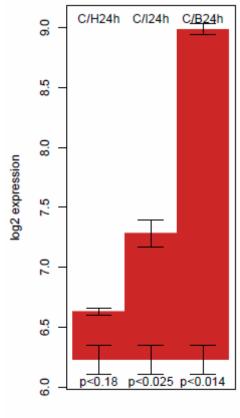
Attenuation

- o For which genes
 - do they support each other?
 - does one block the other?

 - do they diverge? Spread
 - Which dominates for diverging genes? *Dominance*

Ranked list

- o Genes filtered
 - at least one time point >5.5
 - at least one treatment effect >0.5, p<0.05
- o Indicators defined for each category:
 - Synergy
 - Attenuation
 - Spread
 - Dominance
- o Purposes
 - rank
 - measure, compatible log₂-fold change


virtual liver network CHARITÉ unverentätsmedicin berlin

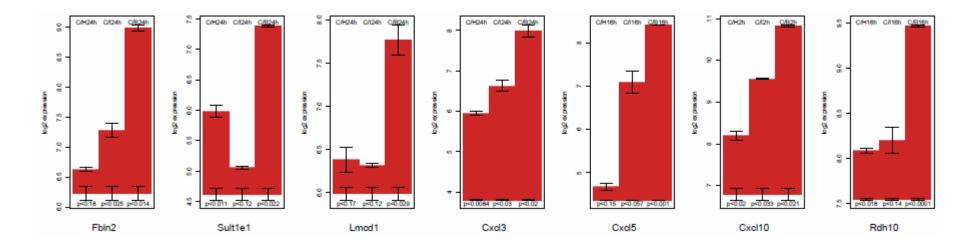
Synergy

- ··· creation of a whole that is greater than the simple sum of its parts.
- Same direction of regulation of HGF and IL-6
- Combined treatment larger effect than single

$$\sigma_t^+ = c_t - \max(a_t, b_t) \quad a_t > 0, b_t > 0$$

 $\sigma_t^- = -c_t + \min(a_t, b_t) \quad a_t < 0, b_t < 0$

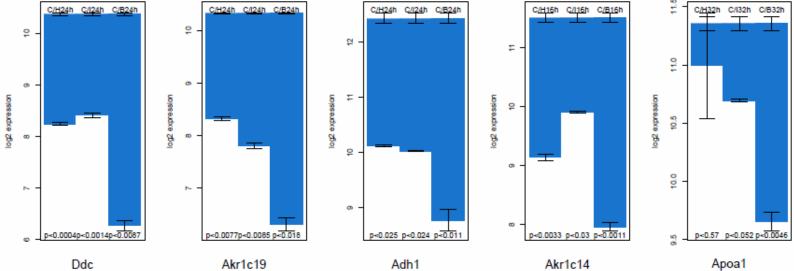
 a_t ... expression change induced by HGF b_t ... expression change induced by IL-6 c_t ... expression change induced by HGF+IL-6


Fbln2

Highest synergy in up-regulation

gene	t	σ_t^+	
Fbln2	24h	1.7	fibulin 2
Sult1e1	24h	1.39	sulfotransferase family 1E, member 1
Lmcd1	24h	1.38	LIM and cysteine-rich domains 1
Cxcl3	24h	1.36	chemokine (C-X-C motif) ligand 3
Cxcl5	16h	1.31	chemokine (C-X-C motif) ligand 5
Cxcl10	2h	1.26	chemokine (C-X-C motif) ligand 10
Rdh10	16h	1.26	retinol dehydrogenase 10 (all-trans)
Arg2	16h	1.24	arginase type II
Spred3	16h	1.22	sprouty-related, EVH1 domain containing 3
lrx3	24h	1.21	Iroquois related homeobox 3 (Drosophila)
Fos	2h	1.05	FBJ osteosarcoma oncogene
P2ry14	24h	1.05	purinergic receptor P2Y, G-protein coupled, 14
Tgm1	4h	1.04	transglutaminase 1, K polypeptide
Havcr1	16h		hepatitis A virus cellular receptor 1

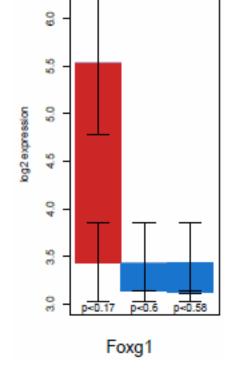
- o Fibulin 2, marker for myofibroblasts, shows fibrosis
 - o C-X-C ligands, intracellular communication



Highest synergy in down-regulation

gene	t	σ_t^-	
Ddc	24h	1.97	dopa decarboxylase
Akr1c19	24h	1.5	aldo-keto reductase family 1, member C19
Adh1	24h	1.25	alcohol dehydrogenase 1 (class I)
Akr1c14	16h	1.18	aldo-keto reductase family 1, member C14
Apoa1	32h	1.04	apolipoprotein A-l
Gjb1	16h	0.99	gap junction protein, beta 1
Cyp26a1	4h	0.99	cytochrome P450, family 26, subfamily a, polypeptide 1
Cbr3	8h	0.97	carbonyl reductase 3
Pparg	24h	0.94	peroxisome proliferator activated receptor gamma
Thbd	32h	0.91	thrombomodulin
Fgf21	24h	0.9	fibroblast growth factor 21
Dnase2b	32h	0.89	deoxyribonuclease II beta
Hsd17b2	32h	0.88	hydroxysteroid (17-beta) dehydrogenase 2
Cd36			CD36 antigen
011045 0		10045	011015 01015 01015

- _ o Ddc, also degrades cytokines
 - o Akr 1c14/1c19 embryonal isoforms



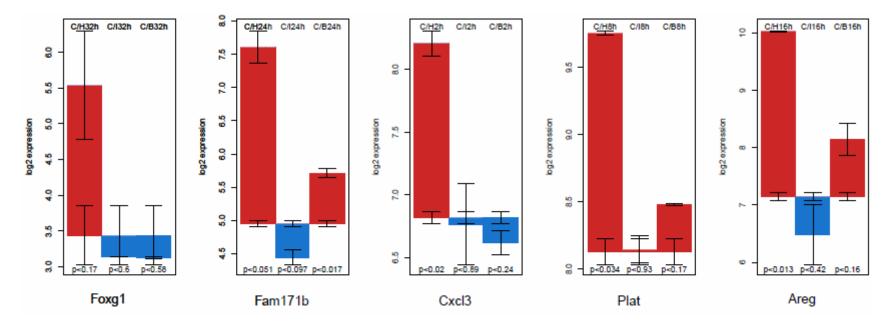
- Significant effect to one factor
- o Little effect to the other
- o Little effect to combined treatment

$$\begin{array}{lll} \alpha_t^{h+} &=& a_t - \mathrm{pos}(c_t) - \mathrm{neg}(b_t) & \text{HGF up} \\ \alpha_t^{h-} &=& -a_t - \mathrm{neg}(c_t) - \mathrm{pos}(b_t) & \text{HGF down} \\ \alpha_t^{i+} &=& b_t - \mathrm{pos}(c_t) - \mathrm{neg}(a_t) & \text{IL-6 up} \\ \alpha_t^{i-} &=& -b_t - \mathrm{neg}(c_t) - \mathrm{pos}(a_t) & \text{IL-6 down} \end{array}$$

C/H32h C/I32h C/B32h

 a_t ... expression change induced by HGF

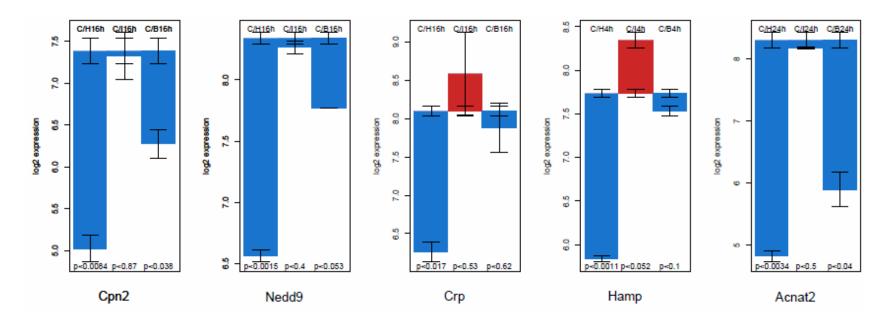
 b_t ... expression change induced by IL-6


 c_t ... expression change induced by HGF+IL-6

Highest attenuation of HGF up-regulation

gene	t	α_t^{h+}	
Foxg1	32h	1.8	forkhead box G1
Fam171b	24h	1.4	family with sequence similarity 171, member B
Cxcl3	2h	1.33	chemokine (C-X-C motif) ligand 3
Plat	8h	1.28	plasminogen activator, tissue
Areg	16h	1.22	amphiregulin
lvl	8h	1.12	involucrin
Krt19	32h	1.07	keratin 19
Adm	24h	1.04	adrenomedullin
Hsd3b4	4h	0.97	hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 4
Gsn	32h	0.95	gelsolin
Cxcl2	2h	0.9	chemokine (C-X-C motif) ligand 2

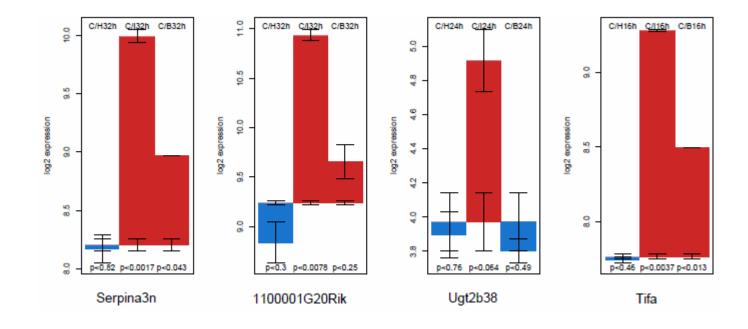
Foxg1 cancer marker, unknown function



Highest attenuation of HGF down-regulation

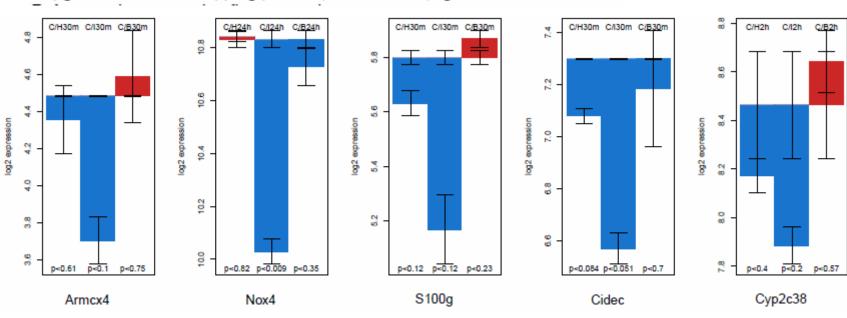
CHARITÉ
UNIVERSITÄTSMEDIZIN BERLIN

gene	t	α_t^{h-}	C
Cpn2	16h	1.25	carboxypeptidase N, polypeptide 2
Nedd9	16h	1.21	neural precursor cell expressed, developmentally down-regulated gene 9
Crp	16h	1.13	C-reactive protein, pentraxin-related
Hamp	4h	1.08	hepcidin antimicrobial peptide
Acnat2	24h	1.08	acyl-coenzyme A amino acid N-acyltransferase 2
Ccl9	24h	1.03	chemokine (C-C motif) ligand 9
St5	8h	0.99	suppression of tumorigenicity 5
Apon	16h	0.99	apolipoprotein N


Nedd9 metastasis marker

Highest attenuation of IL-6 up-regulation

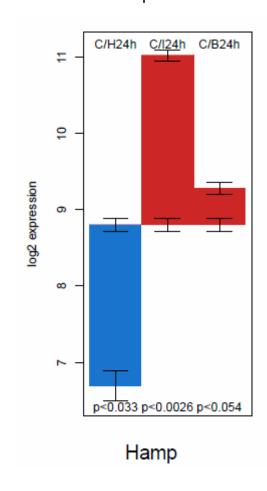
gene	t	α_t^{i+}	
Serpina3n	32h	0.99	serine (or cysteine) peptidase inhibitor, clade A, member 3N
1100001G20Rik	32h	0.88	RIKEN cDNA 1100001G20 gene
Ugt2b38	24h	0.87	UDP glucuronosyltransferase 2 family, polypeptide B38
Tifa	16h	0.76	TRAF-interacting protein with forkhead-associated domain
lvl	24h	0.73	involucrin



Highest attenuation of IL-6 down-regulation

gene	t	α_t^{i-}	
Armcx4	30m	0.78	armadillo repeat containing, X-linked 4
Nox4	24h	0.69	NADPH oxidase 4
S100g	30m	0.63	S100 calcium binding protein G
Cidec	30m	0.61	cell death-inducing DFFA-like effector c
Cyp2c38	2h	0.58	cytochrome P450, family 2, subfamily c, polypeptide 38
Capg	2h	0.58	capping protein (actin filament), gelsolin-like

Divergent regulation

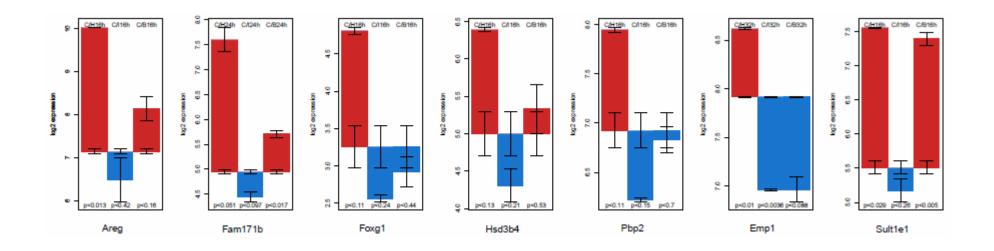

$$\begin{array}{lll} \psi^h_t & = & \frac{3}{4} \mathrm{min} \; (a_t, -b_t) + \frac{1}{4} \mathrm{max} \; (a_t, -b_t) & a_t > 0, b_t < 0 & \text{HGF up/IL-6 down} \\ \psi^i_t & = & \frac{3}{4} \mathrm{min} \; (-a_t, b_t) + \frac{1}{4} \mathrm{max} \; (-a_t, b_t) & a_t < 0, b_t > 0 & \text{HGF down/IL-6 up} \\ \end{array}$$

 a_t ... expression change induced by HGF b_t ... expression change induced by IL-6 c_t ... expression change induced by HGF+IL-6

- What the effect of combined treatment?
- o Cancel out, HGF dominates, IL-6 dominates.

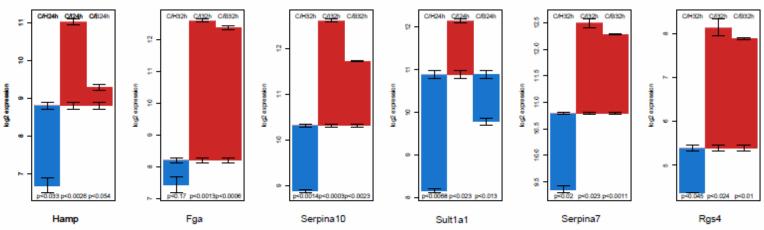
$$\delta_t^h = \begin{cases} pos(c_t) & \text{if } a_t > 0, b_t < 0 \\ neg(c_t) & \text{if } a_t < 0, b_t > 0 \end{cases} \text{ HGF dominates}$$

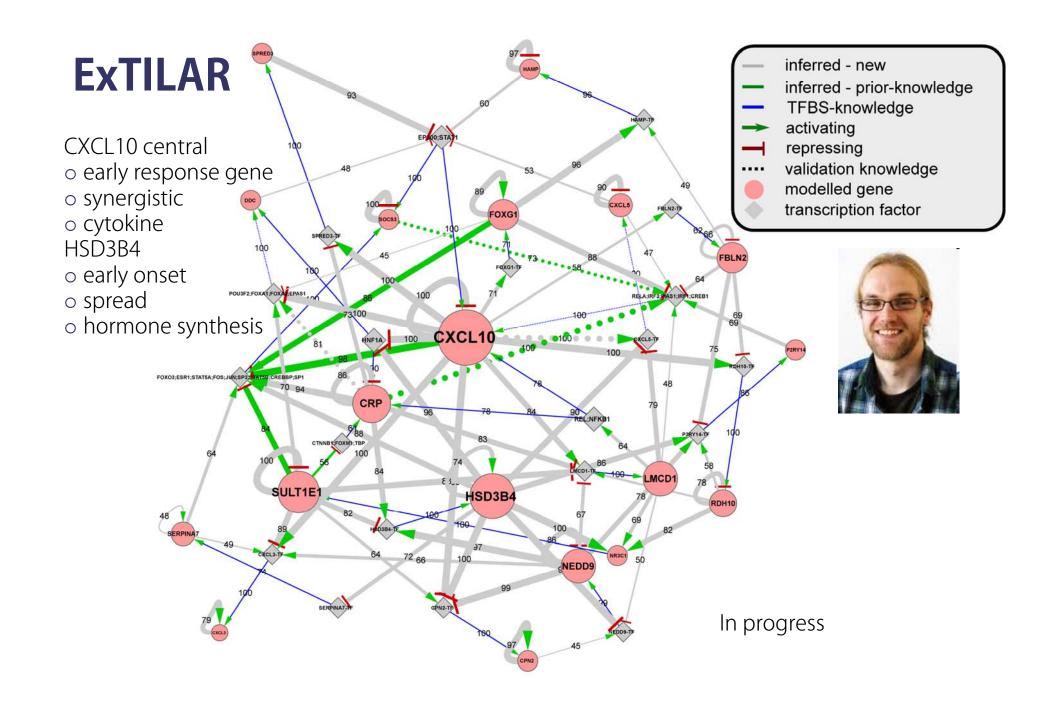
$$\delta_t^i = \begin{cases} pos(c_t) & \text{if } b_t > 0, a_t < 0 \\ neg(c_t) & \text{if } b_t < 0, a_t > 0 \end{cases} \text{ IL-6 dominates}$$

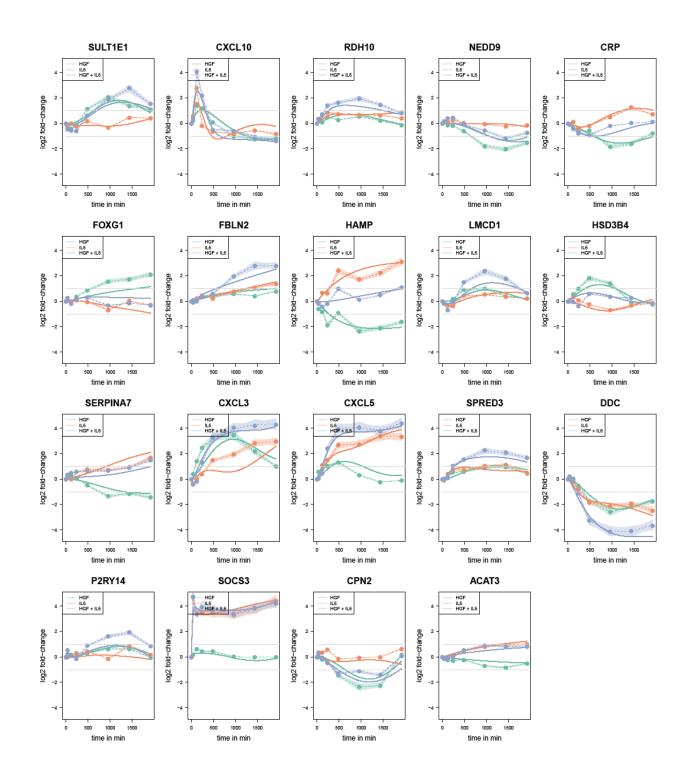


Highest spread of HGF up, IL-6 down

gene	t	ϕ_t^h	δ^h_t	δ^i_t		
Areg	16h	1.22	0.34		amphiregulin	
Fam171b	24h	1.04	0.29		family with sequence similarity 171, member B	
Foxg1	16h	0.91		0.49	forkhead box G1	
Hsd3b4	16h	0.87	0.24		hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid de	C
Pbp2	16h	0.79		0.14	phosphatidylethanolamine binding protein 2	
Emp1	32h	0.77		0.99	epithelial membrane protein 1	
Sult1e1	16h	0.76	0.92		sulfotransferase family 1E, member 1	

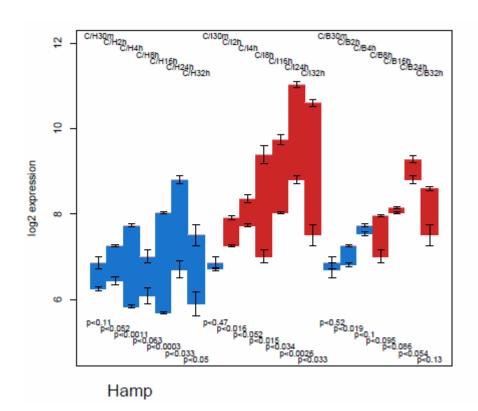

- o Amphiregulin, part of wound healing, damage response program
- Hsd3b4 hormone degradation

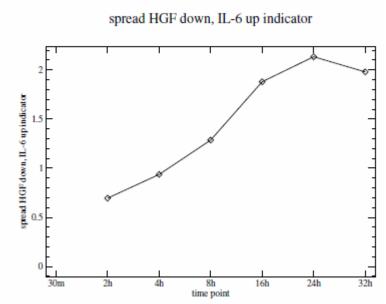


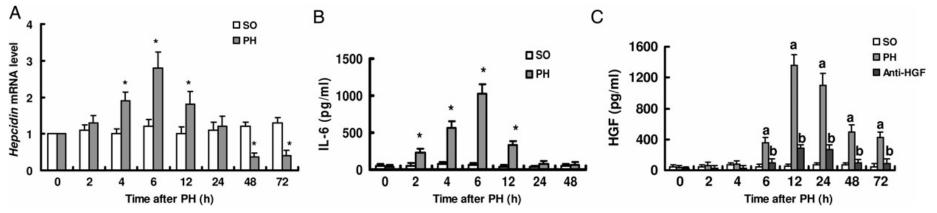


Highest spread of HGF down, IL-6 up

gene	\boldsymbol{t}	ϕ_t^i	δ_t^h		
Hamp	24h	2.13		1 hepcidin antimicrobial peptide	
Fga	32h	1.68		5 fibrinogen alpha chain	
Serpina10	32h	1.65		1 serine (or cysteine) peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrype	sin),
·				member 10	,
Sult1a1	24h	1.62	0.41	sulfotransferase family 1A, phenol-preferring, member 1	
Serpina7	32h	1.5		7 serine (or cysteine) peptidase inhibitor, clade A (alpha-1 antiproteinase, antitryps	sin),
'				member 7	•
Rgs4	32h	1.45		regulator of G-protein signaling 4 Mostly IL-6 dominates	5
Casp12	16h	1.44		2 caspase 12	
Nrg4	24h	1.35		neuregulin 4	
Mpeg1	24h	1.34		2 macrophage expressed gene 1	
Crp	24h	1.33		C-reactive protein, pentraxin-related	
Prg4	24h	1.3		7 proteoglycan 4 (megakaryocyte stimulating factor, articular superficial zone protein))
Fgg	32h	1.3		fibrinogen gamma chain	
Steap4	24h	1.28		STEAP family member 4	

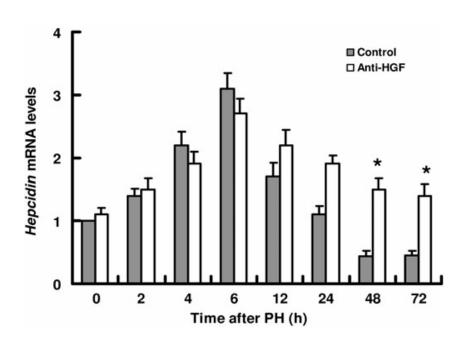






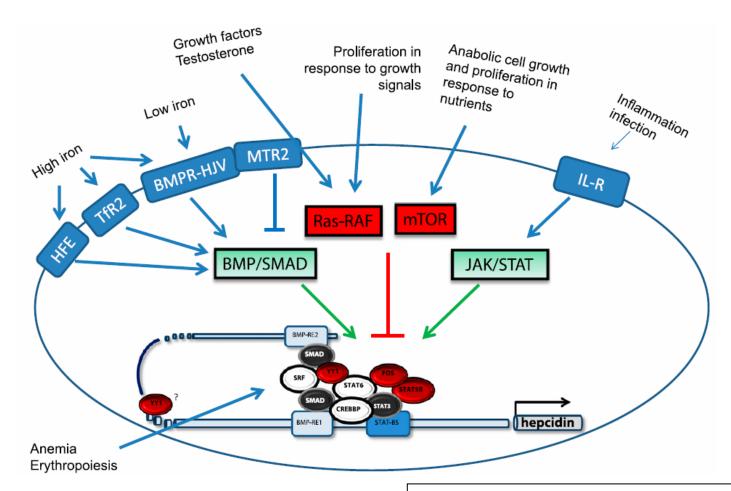
Hepcidin in liver regeneration

SO ··· sham operation

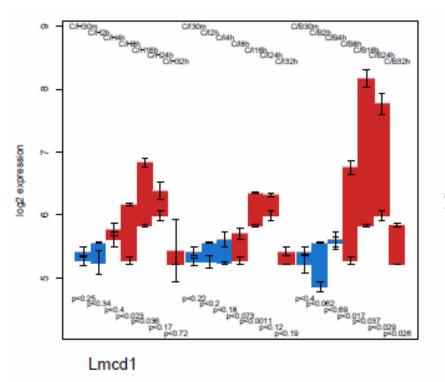

PH ··· partial 2/3 hepatectomy

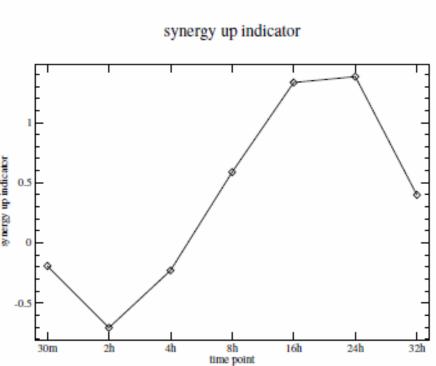
- (B) Time course of serum IL-6.
- (C) Mice were treated with anti-HGF neutralizing antibodies or an equal dose of normal IgG antibodies.

Wang et al. (2013) Hepcidin plays a negative role in liver regeneration. Acta Biochim Biophys Sin 45(12), 1049-54.

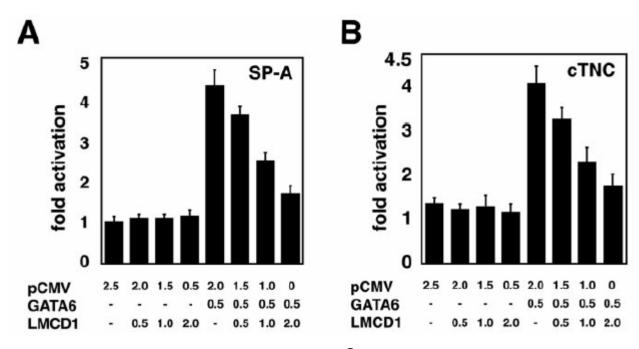

HGF inhibition increases hepcidin

Wang et al. (2013) Hepcidin plays a negative role in liver regeneration. Acta Biochim Biophys Sin 45(12), 1049-54.

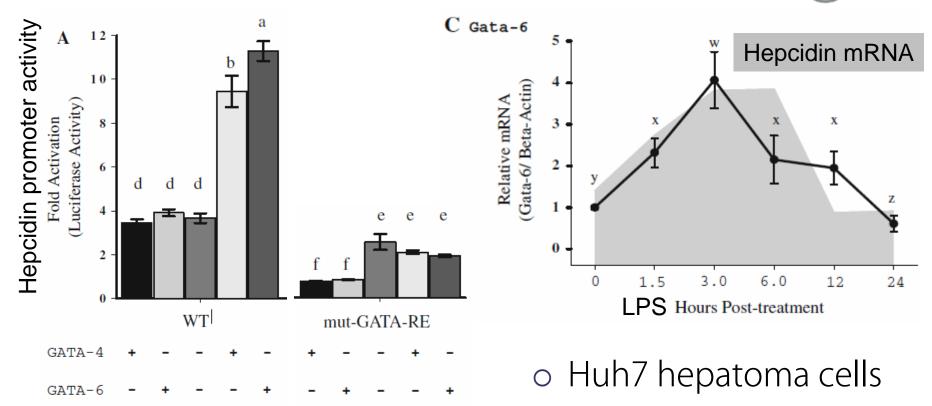

Hepcidin regulation



Arosio (2014) New signaling pathways for hepcidin regulation. Blood 123: 1433-1434.



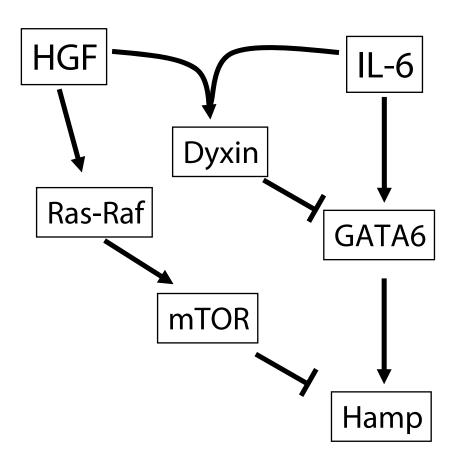
Dyxin binds to GATA6 and inhibits the signal

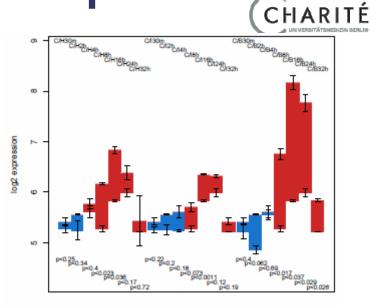


- Target promoters of GATA6
 - SP-A ··· mouse surfactant protein A
 - cTNC ··· cardiac troponin C

Rath et al. (2005) LMCD1/Dyxin Is a Novel Transcriptional Cofactor That Restricts GATA6 Function by Inhibiting DNA Binding. Mol. and Cell Biol. 25(20): 8864-8873.

GATA6 facilitates Hepcidin induction by IL-6




Bagu et al. (2013) Friend of GATA and GATA-6 modulate the transcriptional upregulation of hepcidin in hepatocytes during inflammation. Biometals 26:1051-1065.

IL-6


Hypothesis: role of dyxin in hepcidin

regulation

virtual liver

Take-home message

virtual liver

- HGF and IL-6 important complementary roles in liver regneration
- Top ranked genes for synergy, attenuation, spread are often associated to growth, cancer, (de)differentiation, fibrosis
- Dyxin, 3rd most synergistic, and Hepcidin, most divergent IL-6 induced have known transcriptional connection, putative role in growth control

Acknowledgements

- Sebastian Vlaic
- Hermann-Georg Holzhütter
- Ute Klingmüller, Lorenza d'Allesandro, Svantje Braun, Nikola Müller
- o Hauke Busch, Melanie Börries

