

Flux-balance Optimization Thermodynamics Constraints

Andreas Hoppe

Institut für Biochemie Charité – Universitätsmedizin Berlin

Overview

- 1. What is flux-balance optimization?
- 2. Problem of reversibility (E. coli growth 1)
- 3. Thermodynamic Realizability (TR)
- 4. What defies thermodynamics?
- 5. Testing with known concentrations (E. coli growth 2)
- 6. Estimating standard Gibbs' energies

Overview

- 1. What is flux-balance optimization?
- 2. Problem of reversibility (E. coli growth 1)
- 3. Thermodynamic Realizability (TR)
- 4. What defies thermodynamics?
- 5. Testing with known concentrations (E. coli growth 2)
- 6. Estimating standard Gibbs' energies

 Mathematical framework for the modeling of a biochemical reaction system

- Mathematical framework for the modeling of a biochemical reaction system
- Flux-balance: no internal metabolite accumulated/drained

- o Mathematical framework for the modeling of a biochemical reaction system
- o Flux-balance: no internal metabolite accumulated/drained
- Optimization: way to compute reaction fluxes

HK: Glc + ATP -> G6P + ADP PGI: G6P -> F6P PFK: F6P + ATP -> F1,6BP + ADP FBA: F1,6BP -> DHAP + GAP TPI: GAP -> DHAP

GAPD: DHAP + NAD + PI -> NADH

+ 13DPG

PGK: 13DPG + ADP -> 3PG + ATP

PGM: 3PG -> 2PG

ENO: 2PG -> PEP + H2O

PYK: PEP + ADP -> PYR + ATP

image source: Wikipedia/JohnyAbb

HK: Glc + ATP -> G6P + ADP

PGI: G6P -> F6P

PFK: F6P + ATP -> F1,6BP + ADP

FBA: F1,6BP -> DHAP + GAP

TPI: GAP -> DHAP

GAPD: DHAP + NAD + PI -> NADH

+ 13DPG

PGK: 13DPG + ADP -> 3PG + ATP

PGM: 3PG -> 2PG

ENO: 2PG -> PEP + H2O

PYK: PEP + ADP -> PYR + ATP

= vector of change of metabolite amount

= vector of change of metabolite amount

- $\mathbf{S}\mathbf{v}|_{\mathbf{intern}} = \mathbf{0}$
- Solution space: all flux vectors satisfying FBC
- o Constraints: e.g. 0≤v_{HK}≤2
- o Flux-balance optimization: select one solution as maximum of a scoring function $φ(\)$, e.g.
 - maximize the biomass production
 - maximize ATP yield
- minimize the fluxes

 Constraints
 1) $\mathbf{Sv} = \mathbf{0}$ 2) $a_i < v_i < b_i$ Unconstrained solution space

 V₂

 Allowable solution space

 V₂

 Nat Biotech, 2010.

FB optimization – Reversibility – Thermodynamic Realizability – Defied TD – Concentrations – Gibbs' energies

How to solve?

- o : linear equations
- o $\alpha_i \le v_i \le \beta_i$: linear inequalities
- ο $\varphi($): linear optimization function
- Called "linear program"
 - efficient solvers available
 - millions of variables

Ip_solve, glpk ... GPL CPLEX ... commercial, free academic licenses MATLAB, LINDO ... commercial

Flux-balance analysis

- Knockout strain prediction
 - Edwards & Palsson. BMC Bioinformatics, 2000.
- o Prediction of unknown reactions: gluconate utilization
 - Rolfsson et al., BMC Syst Biol, 2011.
- o Unknown reaction paths: sugar from fat
 - Kaleta et al., PLoS Comput Biol, 2011.

Overview

- 1. What is flux-balance optimization?
- 2. Problem of reversibility (E. coli growth 1)
- 3. Thermodynamic Realizability (TR)
- 4. What defies thermodynamics?
- 5. Testing with known concentrations (E. coli growth 2)
- 6. Estimating standard Gibbs' energies

E. coli model

- o Reed&Palsson 2004 jR904 network:
 - 904 metabolites
 - 932 reactions, transporters
 - Growth function: energy equivalents, amino acids, lipid pools, macromolecules

- o Heuristic setting:
 - 245 reversible reactions
 - 687 reactions fixed to one direction
- o Based on
 - Biochemical knowledge
 - Thermodynamical considerations
 - Purpose

Flux measurements

- o Emmerling et al. J. Bacteriol. 2002
- Comparison with values predicted by FBA (biomass maximization)
 - Heuristic reversibilities (Reed et al., Genome Biol, 2003.)
 - Fully reversible model

18

Rephosphorylation of ATP for free

Rephosphorylation of ATP for free

Active transports

- Rephosphorylation of ATP for free
- Active transports
- o Pumped protons

- Rephosphorylation of ATP for free
- Active transports
- o Pumped protons
- Highly exergone reactions

o Chemical reactions are governed by thermodynamics

Net reaction flux proceeds in the direction of negative Gibbs' free energy ΔG

o Chemical reactions are governed by thermodynamics

Net reaction flux proceeds in the direction of negative Gibbs' free energy ΔG_{π}

o Consequence of 2nd law of thermodynamics

o Chemical reactions are governed by thermodynamics

Net reaction flux proceeds in the direction of negative Gibbs' free energy ΔG_{π}

- o Consequence of 2nd law of thermodynamics
- o Catalysts such as enzymes do not change this

o Chemical reactions are governed by thermodynamics

Net reaction flux proceeds in the direction of negative Gibbs' free energy ΔG_{π}

- o Consequence of 2nd law of thermodynamics
- o Catalysts such as enzymes do not change this

o Chemical reactions are governed by thermodynamics

Net reaction flux proceeds in the direction of negative Gibbs' free energy ΔG_r

- o Consequence of 2nd law of thermodynamics
- o Catalysts such as enzymes do not change this

Dependence on concentrations

$$\Delta G_{r} = \Delta G_{r}^{0} + RT \sum_{\text{products}} \ln[M] - RT \sum_{\text{substrates}} \ln[M]$$

- o R · · · gas constant
- \circ $T \cdots$ temperature
- \circ [*M*] \cdots active concentration
- $\circ \Delta G_r^0 \cdots$ standard Gibbs' free energy

- o Almost every reaction is reversible in principle
- Concentration gradient may sometimes not be sufficient
- o Only few reactions are strictly irreversible for cellular concentrations (Henry et al., Biophys J, 2006.)

- o Almost every reaction is reversible in principle
- Concentration gradient may sometimes not be sufficient
- o Only few reactions are strictly irreversible for cellular concentrations (Henry et al., Biophys J, 2006.)

- o Almost every reaction is reversible in principle
- Concentration gradient may sometimes not be sufficient
- o Only few reactions are strictly irreversible for cellular concentrations (Henry et al., Biophys J, 2006.)

- o Almost every reaction is reversible in principle
- Concentration gradient may sometimes not be sufficient
- o Only few reactions are strictly irreversible for cellular concentrations (Henry et al., Biophys J, 2006.)

Heuristic reversibility settings

- o E. coli network is designed for normal growth
- o Predictions may be poor for extreme cellular states
- o Requires ad hoc assignments

Aim:

- o Flexible as the fully reversible setting
- o Effective as the heuristic setting
- Based on objective criterion
- Not be based on "purpose"

Overview

- 1. What is flux-balance optimization?
- 2. Problem of reversibility (E. coli growth 1)
- 3. Thermodynamic Realizability (TR)
- 4. What defies thermodynamics?
- 5. Testing with known concentrations (E. coli growth 2)
- 6. Estimating standard Gibbs' energies

Thermodynamics applied to metabolic networks

- o First application to metabolic networks (paths):
 - Mavrovouniotis Proc Int Conf Intell Syst Mol Biol. 1993
- Exclude flux distributions infeasible for arbitrary concentrations
 - Beard/Qian, J Theor Biol, 2004, PLoS One. 2007.
- o Thermodynamic assessment: is a given flux distribution compatible with concentrations?
 - Kümmel et al., BMC Bioinf, 2006.
 - Henry et al., Biophys J, 2007.

Thermodynamic Feasibility

o Flux distribution is consistent with given concentrations, if every flux proceeds in the direction of negative $\Delta G_{\rm r}$

Henry et. al., Biophys J, 2004.

Thermodynamic Realizability (TR)

o Flux distribution is called TR if there exist concentrations (within physiological boundaries) such that the system is thermodynamically feasible.

Hoppe et. al., BMC Systems Biology, 2007.

Thermodynamic Realizability (TR)

Problem moved:

Heuristic setting of direction

Metabolite concentration ranges &

Accurate Gibbs' free energy values

TR is a systemic property

o Thermodynamics has been frequently used to fix (single) directions ··· but

TR as a constraint for FBA

$$sgn(V) = -sgn(\Delta G_r^0 + SC)$$

Constants:

S stoichiometric matrix (given)

 $\Delta_{\rm r} G_{\dot 0}\cdots$ standard Gibbs' free energies

Variables:

V ··· (column) vector flux distribution

C ··· (column) vector of log-concentrations *R 7

Constraints:

Ranges for C

Computability

$$sgn(V) = -sgn(\overline{\Delta G_r^0} + SC)$$

- Calculation with log concentrations
- o Constants: ΔG_r^0
- o Linear equation set: $\Delta G_r^0 + SC$
- o sgn(), boolean variables
- o FBA becomes a mixed-boolean linear program
- o efficient implementation in CPLEX: clauses
- o vs. logarithmic optimization
 - anNET: Zamboni et al, BMC Bioinf, 2008.

Concentrations – not so unknown

- Some metabolites measured
- o From other cell types/organisms
- o General assumptions for unknown concentrations
 - <1M general chemical properties
 - >1pM substrates must find enzymes
 - Greater size lower concentration
 - High conversion fluxes higher concentrations
 - Normally, confined to 6 orders

Overview

- 1. What is flux-balance optimization?
- 2. Problem of reversibility (E. coli growth 1)
- 3. Thermodynamic Realizability (TR)
- 4. What defies thermodynamics?
- 5. Testing with known concentrations (E. coli growth 2)
- 6. Estimating standard Gibbs' energies

Photo: Shepherd's Bush Blog

o Ratchet enzyme (still hypothetical in metabolism)

- Ratchet enzyme (still hypothetical in metabolism)
- o Compartments and vesicles (still TD inside)

- o Ratchet enzyme (still hypothetical in metabolism)
- o Compartments and vesicles (still valid inside)
- Molecular channeling

source: U. Jandt

- o Ratchet enzyme (still hypothetical in metabolism)
- o Compartments and vesicles (still valid inside)
- Molecular channeling
- o Directed vesicle transport

source: VidaLuz

- o Ratchet enzyme (still hypothetical in metabolism)
- o Compartments and vesicles (still valid inside)
- Molecular channeling
- o Directed vesicle transport
- o Proteasome peptide transport

source: Maupin-Furlow

Overview

- 1. What is flux-balance optimization?
- 2. Problem of reversibility (E. coli growth 1)
- 3. Thermodynamic Realizability (TR)
- 4. What defies thermodynamics?
- 5. Testing with known concentrations (E. coli growth 2)
- 6. Estimating standard Gibbs' energies

Testing flux predictions in many conditions

- o Chemostat with various flow velocities, 24 mutants
 - Ishii et al., Science, 2007.
- Metabolite concentrations, fluxes measured
- o FBA tested with different algorithms
 - Hoffmann, PhD thesis, 2012.

Finer use of concentration ranges

FB optimization – Reversibility – Thermodynamic Realizability – Defied TD – Concentrations – Gibbs' energies

K ··· individually determined

Kümmel et al., BMC Bioinf, 2006.

S ··· TR computed

F ··· heuristic Feist et al., MSB, 2007

P/FP ··· deduced by system's function

Hoffmann, Genome Inf, 2007.

I ··· flux measured Ishii et I., Science, 2010.

RID	Name	$\Delta_{\mathbf{R}}\mathbf{G}_{min}$	$\Delta_{\mathbf{R}}\mathbf{G}^{0}$	$\Delta_{\mathbf{R}} \mathbf{G}_{max}$	K	S	Р	F	FP	
2	PGI	-17.18	-2.93	5.69						
3	PFK	-40.4	-15.92	6.29			\rightarrow	\rightarrow	\rightarrow	
5	FBA*	-16.92	-17.6	39.06			←		\leftarrow	←
7	TPI*	-22.53	-5.87	14.07			\leftarrow		\leftarrow	←
8	GAPD	-17.6	-0.42	34.79		-	\rightarrow		\rightarrow	-
9	PGK*	-22.56	-11.73	10.05		\rightarrow	\rightarrow		\rightarrow	\rightarrow
10	PGM*	-10.35	0	6.05		\rightarrow	\rightarrow		\rightarrow	"
12	ENO	-13.51	-3.77	3.98		-	\rightarrow		\rightarrow	
13	PYK	-33.73	-22.21	-0.28	\rightarrow	\rightarrow	\rightarrow	-	\rightarrow	
15	PDH	-74.47	-34.78	-24	\rightarrow	-	\rightarrow	-	-	-
16	ME2*	-9.84	-6.7	40.84		.,,	- 1	←	←	←
17	ME1*	11.68	-5.45	55.89	←	←	←	+	←	←
18	PPCK*	4.75	-0.84	45.74	-	·	<u></u>	·	·	n.e.
22	G6PDH2r	-21.73	-6.7	25.99	-	<u></u>	\rightarrow	,	→	→
23	PGL	-37.65	-21.37	-14.04	\rightarrow	-	\rightarrow	-	<i>-</i>	-
24	GND*	-19.63	-3.49	47.94	-,	7	<i>←</i>	<i>→</i>	<i>→</i>	<i>→</i>
25	RPI*	-19.05	-2.09	9.87			\rightarrow	-	\rightarrow	<u></u>
27	RPE	-21.74	-2.09	6.49					-,+	→ →
28	TKT1*	-40.16	-7.96	13.93						-
30	TKT2	-15.66	-7.12	25.97						
32	TALA	-36.67	-7.12	7.18						
34	CS		-36.03							
40.		-59.24		-2.02	\rightarrow	-	\rightarrow	-	→	-3
36	ACONTa*	-17.88	-6.29	20.28		\leftarrow			←	←
37	ACONTO	-9.63	-0.84	19.26		\rightarrow	\rightarrow		-	->
40	ICDHyr*	-22.62	-14.25	32.28		\leftarrow	\leftarrow		\leftarrow	←
41	AKGDH	-81.2	-34.78	-30.45	\rightarrow	\rightarrow	\rightarrow	-	\rightarrow	-
42	SUCOAS	-32.08	-4.19	20.01		\leftarrow	\leftarrow		\leftarrow	←
45	FUM	-18.09	-2.51	17.59						\rightarrow
48	MDH*	-34.34	-26.82	17.41						n.e.
49	MDH2	-83.34	-45.67	-26.8	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	n.e.
52	PPC	-35.55	-28.49	-3.95	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	n.e.
53	THD2pp*	-42.35	-22.14	17.35				\rightarrow	\rightarrow	n.e.
54	NADTRHD	-46.43	-1.26	9.83				\rightarrow	\rightarrow	n.e.
55	ATPS4rpp*	-15.9	-7.45	13.48					\rightarrow	n.e.
56	NADH16pp	-47.2	-37.39	12.54				-		n.e.
57	NADH5	-90.83	-72.49	-36.24	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	n.e.
58	CYTBO3_4pp	-46.4	-62.27	38.13				\rightarrow	\rightarrow	n.e.
59	CYTBDpp	-104.57	-109.07	-26.91	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	n.e.
62	SUCDi	-39.98	-8.8	20.65				\rightarrow	\rightarrow	\rightarrow
64	PFL	-41.37	-21.37	-0.95	\rightarrow	\rightarrow	\rightarrow			n.e.
66	FDH4pp&FORtppi	-99.33	-74.2	-53.08	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	n.e.
69	ACALD	-33.15	-18.44	28.29		\leftarrow	\leftarrow		\leftarrow	←
71	ALCD2x*	-43.48	-25.14	11.11		\rightarrow	\rightarrow		\rightarrow	\rightarrow
74	PTAr*	-27.17	-15.92	6.83		\leftarrow	\leftarrow	←	\leftarrow	←
75	ACKr*	-38.16	-18.02	-1.62	\rightarrow	\rightarrow	\rightarrow		\rightarrow	-
81	LDH_D*	-29.86	-26.82	0.17		\rightarrow	\rightarrow		\rightarrow	-
	_									

Tested: independent flux ratios

 $R_1 = \frac{v_2}{v_{22} + v_2}$ Fluss in die Glykolyse (und nicht in den Pentose-Phosphat-Weg) $R_2 = \frac{v_{13}}{v_{13}+v_{18}+v_{52}}$ (Netto)Fluss von Pep zu Pyruvat via PYK (und nicht zum Oxalacetat) $R_3 = \frac{v_{51}}{v_{37}}$ Fluss in den Glyoxalatshunt (und nicht weiter im Zitratzyklus) $R_4 = \frac{v_{34}}{v_{34}+v_{71}+v_{75}}$ Fluss von Acetyl-CoA in den Zitratzyklus (und nicht in Ethanol oder Acetat) $R_5 = \frac{v\tau_1}{v\tau_1 + v\tau_5}$ Ethanol-Export (und nicht Acetatexport) $R_6 = \frac{v_{92}}{-v_{eq}}$ Succinat-Export (und nicht Umsetzung zu Fumarat) $R_7 = \frac{v_{64} + v_{15}}{v_{64} + v_{15} + v_{81} + v_{94}}$ Fluss von Pyruvat zu Acetyl-CoA (und nicht ins Lactat) Fluss von Pyruvat nach Lactat (und nicht Umsetzung zu Acetyl-CoA oder Pyruvatexport)

Flussverhältnisse experimenteller Werte der Studie von Ishii et al.:

	GR03	GR04	RF03	min	max
R_1	0,85	0,57	0,88	0,47	1
R_2	0,59	0,72	0,74	0,5	1
R_3	-	-	0,02	0	0,41
R_4	0,88	0,85	1	0,85	1
R_5	0,23	0,07	0	0	1
R_6	0	0	0	0	0
R_7	1	1	1	1	1
R_8	0	0	0	0	0

FB optimization – Reversibility – Thermodynamic Realizability – Defied TD – Concentrations – Gibbs' energies

TR with setpoint most robust criterium (TRs)

FB optimization – Reversibility – Thermodynamic Realizability – Defied TD – Concentrations – Gibbs' energies

TR with setpoint predicts metabolite conentrations 1.5e-01 6.3e-02 2.5e-02 Metabolitkonzentration in [M] 1.0e-02 3.9e-03 1.5e-03 6.3e-04 2.5e-04 1.0e-04 3.9e-05 1.5e-05 6.3e-06 2.5e-06 1.0e-06 Metabolite Sollwerte Angenommene Metabolitkonzentrationen Toleranzgrenze **GR03** GR03 (TRs) untere

FB optimization – Reversibility – Thermodynamic Realizability – Defied TD – Concentrations – Gibbs' energies

GR04 (TRs)

GR04

obere

Overview

- 1. What is flux-balance optimization?
- 2. Problem of reversibility (E. coli growth 1)
- 3. Thermodynamic Realizability (TR)
- 4. What defies thermodynamics?
- 5. Testing with known concentrations (E. coli growth 2)
- 6. Estimating standard Gibbs' energies

Measuring Gibb's energies

- Caloric measures, equilibrium points
- NIST 74 database, collection of literature data

- Low coverage of genome-size models
 - Kümmel et al., BMC Syst Biol,2006.
- Different experimental essays: not fully comparable values

Source: AdvoCare Types of calorimeters

Computing Gibb's energies

- Group Contribution method (Mavrovouniotis 1990)
 - Recent implementation: Jankowski et al., Biophys J, 2008.
- Calculating effect of pH, temperature etc.
 - Thermodynamics of Biochemical Reactions, Alberty, 2003 (book).

IGERS: Reaction-classification method

- Molecule decomposition algorithm
 - 59 alpha position groups
 - 126 chemical groups
- Atom transition matrices (BIOPATH, KEGG)
- o Reaction classification
 - 2210 reaction types (in KEGG)
- Inference on reaction type similarity
- o Rother et al., Biophys J, 2010.

Take-Home Message

- o Reversibility critical for flux-balance optimization
- Thermodynamic realizability: systemic and universal approach to reversibility in FBA
- Similar yield as knowledgeable setting of (ir)reversibility (for E. coli)
- o Concentrations known: TR with setpoint

Have a look at:

- www.charite.de/sysbio/hoppe
- www.bioinformatics.org/fasimu

Acknowledgements

Hermann-Georg Holzhütter

Sabrina Hoffmann

Sascha Bulik

Kristian Rother

Thank You very much for your attention!