

Effects of statin treatment

Steroltalk RNA data analyzed for metabolic regulation

Andreas Hoppe, Charité Universtitätsmedizin Berlin Computational systems biochemistry group

Experimental set-up

3 dead donors

3 donors, lobectomy, liver cancer

SterolTalk EU project Budapest, Ljubljana

R

Rifampicin 300

1d

2d

MødeScore analysis, top scorer

ModeScore amplitudes

ModeScore analysis, areas of large changes

Cholesterol synthesis

Sugar metabolism

Fatty acid metabolism

Transamination

Urea synthesis

Lipoproteins

Patterns of gene changes

Cholesterol synthesis pattern

Very consistent

18/21 enyzmes of cholesterol synthesis

Large changes

Pattern definition Statins:

1d strong up 2d (slightly) up Rifampicin:

minor change

Cholesterol synthesis pattern

Other enzymes and genes: ACAT2, FABP1

Cholesterol synthesis pattern, how?

Regulated by active SREB2

Gene product of SREBF2

Activated by Scap (sterol-sensing)

cleaved by proteases

Sterol regulation

Lipid pattern

Particular enzymes in lipid formation, FA synthesis and degradation
Specific isoforms

Pattern definition

Statins:

1d up

2d up

Rifampicin:

up, less than statins

Lipid pattern

THRSP ... known regulator of lipid metabolism

Insulin-induced gene

Inverse cholesterol synthesis pattern

Only few genes

Pattern definition

Statins:

1d strong down 2d (slightly) down Rifampicin:

minor change

Sterol regulation

CAR/PXR

- SREBF1, INSIG1, SCD, ABCB1, CYP3A4, ELOVL6 are known to be activated by CAR/PXR
- Affected by both statins
- But: different patterns

CAR ... constituitive andrane receptor PXR ... pregnane X receptor Hafner et al, 2011

ELOVL6

CYP3A4

CAR/PXR

- De novo synthesis of receptors
 - CAR down by Rifmpicin
 - PXR slightly down by all
- May contribute statin regulation
 - decoupling of SREB1/SREB2

Aminotransferase pattern

Several aminoacid enzymes

But also other
enzymes TPI1 PCCB
ALDH4A1 APOC2 CYP8B1

Pattern definition

Statins:

1d minor change

2d down

Rifampicin:

1d down

2d minor change

Aminotransferase pattern, how?

Atorva/Rosuvastatin difference

Several aminoacid enzymes Some nuclear factors

Aspartate aminotransferase Glutamatedehydrogenase

Pattern definition

Both statins:

1d up

Atorvastatin: 2d up

Rosuvastatin: 2d down

Rifampicin:

minor change

Urea cycle pattern

Urea cycle except OTC

Pattern definition

Statins:

1d up

2d down

Rifampicin:

minor change

Urea cycle pattern

Enzymes cooperating with urea cycle

Urea cycle pattern, how?

Statin

SREB1?

PXR? slow

Genes of urea cycle pattern

Inverse pattern
Possibly downstream

n-acetyl-glutamate synthase n-acetyl-glutamate known to control CPS-I

Fibroblast growth factor

Small amplitude
Probably downstream

FOXA2 Forkhead box 2

Atorvastatin Rifampicin pattern

CYP 3A4 ... oxidizing all 3 molecules

Rosuvastatin suppresses its own degradation

Pattern definition

Atorvastatin & Rifampicin 2d up Rosuvastatin:

minor change

Atorvastatin Rifampicin pattern

Rosuvavastatin Atorvastatin

Rifampicin

TF?

Genes of Atorva Rifamp pattern

or

Rosuvastatin

Statins & Rifampicin

CYP activating TF?

Genes of Atorva Rifamp pattern

Other patterns

- Donor specific response: sugar metabolism
- Donation type difference
 - Acute serum response proteins cancer donors
- Gluconeogenesis
 - G6P controlled by SREB1
 - Down-regulation of glucose transporter SLC2A2

Summary

- ModeScore ranking focus on parts of metabolism
- Specific patterns of gene regulation
 - Strong cholesterol synthesis up-regulation
 - mechanism known: Scap→SREB2
 - Selective regulation of FA metabolism
 - several mechanisms: SREB1, CAR/PXR, Insig1
 - Aminotransferase pattern
 - affecting Scap desensitizing Cholesterol regulation
 - Urea cycle regulation (unclear how)
- Patterns suggest regulation cascade
 - new mechanisms proposed
 - Strong effect of Rosuvastatin by inhibition of transcription factor

Acknowledgements

Damjana Rozman, Ljubljana Mateja Hafner, Ljubljana Hermann-Georg Holzhütter