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Objective. To model single-cell organisms by an optimization approach a simple

target function suffices since these cells only need to grow and replicate. However, Vast complexity of the re-

higher organism cells such as the human hepatocyte have a multitude of different FIUX balance Cﬂndltlon lations of metabolites,
functions: self maintenance, substrate supply to other cells of the organism, trans- An internal metabolite j may neitherac- enzymes, and effectors
formation of waste products to disposable substances, clearance of toxic sub- cumulate nor be consumed ‘

stances from the blood and detoxification, homeostasis etc. . Thus, the fitness of \ ZSz'jVi =0

such a cell can only be measured in the context of the whole organism. Here, we
present the steps towards realistic and yet managable models of higher cells.

Flux minimization

Multidimensional Flux prediction by 1. fixing the metabolic output, and
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Higher cells often op-
erate at the brink of

their capacity.

Thermodynamic realizability
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Ongoing project
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