
Background. Full-genome expression pro�les for di�erent cell 
systems under many conditions are available and their interpre-
tation with respect to the metabolism is a major challenge in sys-
tems biology. Current approaches are based on the classi�cation 
of the transcript values in on/o�. It turns out that this distinction 
is particularly di�cult for metabolic genes as they may show a 
relatively high basal RNA expression when not active. Oppositely, 
several long-lived enzymes show low RNA expression levels al-
though undoubtedly active.
Results. An approach is presented to predict activity changes of 
metabolic functions by scoring reference �ux distributions. 
Rather than attempting to predict �uxes in a metabolic system 
which is hard to validate, reference �ux distributions obtained 
with �ux-balance computations are the sca�old to interpret tran-
script changes for metabolic genes. Compared with the 
annotation-based approach ModeScore relates transcript 
changes directly to metabolic functions, thus, provides testable 
hypotheses on the level of cellular function. The process of the al-
gorithm will be demonstrated in time-course study of the e�ects 
of the cytokines HGF, TGF, and IL6 on cultured primary mouse he-
patocytes.
In conclusion, the novel method provides an enrichment for 
the most promising functions together with the genes it is based 
upon for further metabolic analysis solely based on transcript 
pro�les.

Detailed reaction list. Degradation of Phenylalanine
TGFβ/C 1h TGFβ/C 6h TGFβ/C 24h

Rea Score Expr Score Expr Score Expr Wght Reaction
ID 0.34 ∆ 0.44 ∆ 0.43 ∆
r0399 0.9 -0.1 0.15 -0.005 0 -2.97 14.3 Tetrahydrobiopterin(c) + Phenylalanine(c) + O2(c) � Dihydrobiopterin(c) + Tyrosine(c) + H2O(c).

L-Phenylalanine,tetrahydrobiopterin:oxygen oxidoreductase (4-hydroxylating) Phenylalanine, tyrosine
and tryptophan biosynthesis EC:1.14.16.1

Pah ENSMUSG00000020051 phenylalanine hydroxylase

r0183 0 -0.42 0.74 -0.28 0.01 -1.96 12.6 Tyrosine(c) + AKG(c) � 4-Hydroxyphenylpyruvate(c) + Glutamate(c). L-Tyrosine:2-oxoglutarate
aminotransferase Tyrosine metabolism / Phenylalanine, tyrosine and tryptophan biosynthesis
EC:2.6.1.5 EC:2.6.1.57

Tat ENSMUSG00000001670 tyrosine aminotransferase

r0543 0.002 0.1 1 -0.19 0.49 -1.21 12.8 Homogentisate(c) + O2(c) � 4-Maleylacetoacetate(c). Homogentisate:oxygen 1,2-oxidoreductase
(decyclizing) Tyrosine metabolism / Styrene degradation EC:1.13.11.5

Hgd ENSMUSG00000022821 homogentisate 1, 2-dioxygenase

r0069 0.02 0.06 0 0.98 0.01 0.37 8.49 CoA(c) + Acetoacetyl-CoA(c) � 2 Acetyl-CoA(c). Acetyl-CoA:acetyl-CoA C-acetyltransferase Synthe-
sis and degradation of ketone bodies EC:2.3.1.9 (2 genes, 5 sp.)

Acat1 (3) 0.06 1.5 0.54 ENSMUSG00000032047 acetyl-Coenzyme A acetyltransferase 1
Acat2 (2) 0.05 0.2 0.11 ENSMUSG00000023832 acetyl-Coenzyme A acetyltransferase 2

r0544 0.89 -0.16 0.07 0.03 0.98 -0.69 12.7 4-Hydroxyphenylpyruvate(c) + O2(c) � Homogentisate(c) + CO2(c). 4-
Hydroxyphenylpyruvate:oxygen oxidoreductase (hydroxylating,decarboxylating) Tyrosine metabolism
EC:1.13.11.27

Hpd ENSMUSG00000029445 4-hydroxyphenylpyruvic acid dioxygenase

r0034 0.57 -0.06 0.39 -0.06 0.21 -1.43 7.02 2 ATP(m) + CO2(m) + H2O(m) + NH3(m) � 2 ADP(m) + Pi(m) + Carbamoyl-P(m). Carbon-
dioxide:ammonia ligase (ADP-forming,carbamate-phosphorylating) Urea cycle and metabolism of
amino groups / Nitrogen metabolism EC:6.3.4.16

Cps1 ENSMUSG00000025991 carbamoyl-phosphate synthetase 1

r0875 0 0.19 0 0.28 0.0003 0.77 8.71 Glutamate(c) + H+(PG)(c) → Glutamate(m) + H+(PG)(m). Mitochondrial Carrier (MC)
TCDB:2.A.29.14.3

Slc25a22 ENSMUSG00000019082 solute carrier family 25 (mitochondrial carrier, glutamate), member 22

r0605 0.1 0.01 0.23 -0.03 1 -0.78 12.9 4-Maleylacetoacetate(c) � Fumarylacetoacetate(c). 4-Maleylacetoacetate cis-trans-isomerase Tyrosine
metabolism / Styrene degradation EC:5.2.1.2

Gstz1 ENSMUSG00000021033 glutathione transferase zeta 1 (maleylacetoacetate isomerase)

shortened

ModeScore computation.  [2] Flux distributions com-
puted in the stoichiometric network of the hepatocyte’s metabolism 
[2] for a plethora of metabolic functions are matched to transcript 
changes with a novel method combining the scoring approach [3] to 
complex functional �ux distributions [4], implemented in [5].
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Network. HepatoNet1b, manually curated net-
work of the human hepatocyte [4], re�ned to cover 
more functions, comprises 1500 localized metabolic 
species, 2702 reactions, 879 annotated genes [1].

Data. Full genome RNA transcript pro�les (A�ymetrix 
430.2) of primary mouse hepatocytes cultured on colla-
gen monolayer.  Various time points, TGFβ, HGFα, IL6 
stimulation.
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TGFβ (transforming growth factor beta)
leads to a down-regulation of many liver speci�c metabolic functions in-
cluding the degradation of amino acids and ethanol as well as urea for-
mation. The down-regulation of phenylalanine degradation is particu-
larly strong. Only few genes are up-regulated e.g. collagens.

HGFα (hepatocellular growth factor alpha)
leads to a down-regulation of many liver speci�c metabolic functions. Genes of the synthesis of cel-
lular constituents, such as lipids, are up-regulated. Its role in hepatocellular proliferation is high-
lighted by the consistent up-regulation of genes in the purine de novo synthesis.
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IL6 (interleukin 6)
generally shows a similar response as HGFα. Among the down-regulated liver functions, IL6 shows a 
particularly strong down-regulation of  urea synthesis. Among the up-regulated genes, the genes of 
phospholipid synthesis are speci�cally up-regulated by IL6.

Selected genes. Expression values of two 
treatment series displayed as a bar, blue indicates 
down-regulation, red up/regulation. Standard devia-
tion and Welsh t-test based on the repeats.

control 1h/24h TGFβ/control 24h
Simulation rank ampl score rank ampl score

Aspartate degr 1 -4.7 0.32 23 -0.9 0.34
Asparagine degr 2 -4.6 0.38 21 -0.98 0.34
Proline degr 3 -4.6 0.25 72 -0.51 0.5
Taurine from Cysteine 6 -2.99 0.49 8 -1.46 0.5
Tyrosine 21 -1.51 0.65 2 -2.86 0.65
Gluconeogen from Alanine 4 -3.52 0.4 51 -0.63 0.35
Ethanol degr 65 -0.52 0.64 1 -3.56 0.54
Phenylalanine degr 5 -3.23 0.41 36 -0.76 0.43
Gluconeogen from Glycerol 7 -2.98 0.47 47 -0.69 0.51
Gluconeogen from Lactate 8 -2.54 0.39 62 -0.57 0.51
Arachidonate from Dihomo-gamma-linolenate 11 -1.84 0.39 30 -0.85 0.6

Function ranks by amplitude
Relative expression scores of the third time point (24h) with  respect to 
the �rst (1h) for the control and TGFb series sorted  by the sum of ampli-
tudes (inverse  of scaling factor l). Only the most down-regulated shown.

Reference �ux distributions (modes)

Plethora of metabolic functions (992), three categories: 
- Regeneration of important intemediates (72)
- Function of organismic duty (379)
- Synthesis and degradation of cellular constituents (541)
- Computation with FASIMU [5]
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