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Introduction

Relative extensions of algebraic number fields are a basic concept in algebraic num-
ber theory and have been theoretically well–studied. The classic aim is to find an
absolute field extension over Q which is isomorphic to the relative extension. If this
connection is established the problem can be considered solved.

This is not the case in computational algebraic number theory. The difference be-
tween absolute and relative extension is mirrored in different representations. The
pity is that a relative extension does not have a relative integral basis in general.
But there is the notion of a pseudobasis, which goes back to the theorem [O’M63,
§81:3]. The pseudobasis replaces the integral basis and is sufficient for computational
purposes although quite a few problems must be solved.

A more general approach deals with finitely generated modules over integral do-
mains which can be represented with pseudobases. There are infinitely many dif-
ferent pseudobases for one module, and the overall subject of this thesis is to give
efficient algorithms to produce a good pseudobasis (which is called normal form)
of a given module. As integral bases are represented by matrices, pseudobases are
represented by pseudomatrices, which can be seen as a generalization. The normal
form for pseudomatrices can be seen as a generalization of the Hermite normal
form (HNF) for matrices.

The earliest algorithmic approach is in [BP91], which is based on the “almost”
constructive proof in [O’M63]. Another algorithm is given in [Coh96], including a
convention for a unique normal form. Relative normal form algorithms are imple-
mented in KANT([Kant]) and in gp([Pari]).

In [BP91] and [Coh96], only the case of the ring of integers of an algebraic number
field over Q is dealt with. But, for many parts of the theory, generalizations are
possible. As the most general case, we will consider integral domains. Sometimes
we require the existence of inverse ideals and factorizations of ideals, which is well–
defined only inDedekind rings. The main aspect of this work is the implementation
of algorithms. These algorithms are given for orders in algebraic number fields over
Q which will be called algebraic number rings.

The ring of integers of an algebraic number field (or the maximal order of an alge-
braic number field), referred to in the following as oK, is an algebraic number ring
and a Dedekind ring.

The first chapter presents algorithms for ideals in algebraic number rings and
Dedekind number rings. Some definitions and propositions with non–constructive
proofs are given for more general rings.
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The second chapter deals with the theory of reducing fractional elements with ideals
over integral domains. The latter part gives reducing methods for algebraic number
rings.

The third chapter deals with the theory of the representation of finitely generated
modules over integral domains with matrices. A completely satisfying result (which
is the proof of the unique existence of a normal form) can only be obtained for
Euclidean rings.

The fourth chapter deals with the theory of pseudomatrices over integral domains.
For Dedekind rings we obtain a satisfactory correlation of pseudomatrices and
finitely generated modules. For maximal orders, normal form algorithms are given.

The fifth chapter introduces an important application of the normal form algo-
rithms: the relative ideals.

The sixth chapter gives results of practical investigations with the author’s imple-
mented versions of normal form algorithms and also a comparison to the imple-
mented version in [Pari].

I would like to refer the reader to the index if any notation or symbol is unclear.

First of all I would like to thank my supervisor Prof. Michael E. Pohst. He pointed
me to the subject of this work and helped me in all stages of the work with expla-
nations, comments, and criticisms.

I would like to thank Prof. Henri Cohen for being my second referee, for giving me
an ear for questions, and for the hospitality at the Université Bordeaux.

The KANT project has given my work a solid framework. Most of all I’d like to
appreciate the help of Dr. Claus Fieker for support and collaboration in many
aspects, Dr. Mario Daberkow for the introduction to the relative normal forms,
Florian Hess for the introduction to the KANT system, Carsten Friedrichs and
Jürgen Klüners for stimulating conversations, Oliver Voigt for the technical support,
and all the KANT group.

I am greatly indebted to Catherine Roegner for revising the text of the thesis to
improve the English.

Last but not least I thank Brigitte Trewin for her love.

The typesetting has been done with [Knu86], using [Kop92] and [GMS94], with the
aid of [Tho] and [Ned94].



Chapter 1

Ideals in algebraic number rings

This chapter contains various algorithms dealing with ideals and algebraic numbers
in orders of an algebraic number field. They form the basis for the normal form
algorithms for pseudomatrices in chapter 4 and for their efficient implementation.

In the first four sections a collection of efforts is given to improve the efficiency
of the arithmetic and basic functions for ideals over algebraic number rings as
theoretically described in [PZ93, pp. 396–408] and in [Coh95, pp. 186–193, 202–
204]. The description in [vS87, pp. 23–96] is closest to the actual implementation
in KANT.

The rest of the chapter consists of detailed formulations, improvements, and gener-
alizations of algorithms for algebraic numbers and ideals which are based on either
[BP91] or [Coh96].

The algorithms are supplemented with general formulations of definitions, propo-
sitions, and methods for integral domains (commutative unital rings without non-
trivial zero divisors) or Dedekind rings, where applicable.

As usual the following definitions on ideals are used.

Definition 1.0.1:
Let D be an integral domain and K its quotient field. A D–module a contained in D,
including the zero ideal (denoted 0D), is called an integral D–ideal.
A nonzero D–module a ⊂ K is called a fractional D–ideal iff there exists a δ ∈ D such
that δa is a D–ideal.

1.1 Representations of ideals over algebraic number rings
Let K be a finite algebraic field extension of Q , which will be called an algebraic
number field.

Let O be an order of K. Let Ω = (ω1, . . . , ωn) be a Z–basis of O:

O =

n∑
i=1

Zωi. (1.1.1)

This basis can be viewed as a Q –vector space basis of K:

K =

n∑
i=1

Qωi.

5



6 CHAPTER 1. IDEALS IN ALGEBRAIC NUMBER RINGS

Fractional O–ideals are presented by a nonzero integral O–ideal a and a denom-
inator d ∈ N as a

d .

There are two basic principles for representing an integral O–ideal: either as a Z–
basis (of n elements of O) or as an O–generating system (where two elements of O
suffice — therefore it is called a two–element presentation).

An integral O–ideal a can be represented as n algebraic numbers ξi ∈ K, for i ∈ Nn,
or equivalently, a matrix A = (A1, . . . ,An) over Z (where the columns A1, . . . ,An
of A satisfy ξi = ΩAi):

a =

n∑
i=1

ξiZ =

n∑
i=1

ΩAiZ. (1.1.2)

This is called the basis presentation of a. For practical purposes, it is very useful
if A is in upper triangular Hermite normal form (HNF). See the general defini-
tion 3.2.4.

An integral ideal a can also be represented by a natural number a and an algebraic
integer α ∈ O as a = aO + αO, which is called two–element presentation.
Similarly, a principal ideal is represented with a single algebraic number α as a =
αO.

It is possible to convert the basis presentation into the two–element presentation
and vice–versa (described in [vS87, pp. 40–41]).

1.2 Arithmetic for ideals of algebraic numbers

Let O be an order of an algebraic number field. Since fractional algebraic numbers
always have natural denominators, it is easy to base fractional on integral ideal
arithmetic:

Algorithmic idea 1.2.1: Basing fractional arithmetic on integral arithmetic
Let a and b be two fractional ideals. Let d1 be the denominator of a and d2 be the
denominator of b. Let d3 be the maximal natural factor of d1a (see definition 1.3.5),
d4 the maximal natural factor of d2b. Let d5 = gcd(d2, d3) and d6 = gcd(d1, d4).
Then

ab =
(d1d5 a)(d2d6 b)

d1
d6
d2
d5

and
d1

d5
a ⊂ O, d2

d6
b ⊂ O, d1

d6
∈ N,

d2

d5
∈ N.

Let d = lcm(d1, d2). Then

a + b =
da + db

d
.

These formulas are used to base the arithmetic of fractional ideals on integral ideals.
Therefore we may confine our efforts to methods for integral ideals.
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1.2.1 Special multiplication algorithms

If we analyze the computation run times (this is demonstrated in section 6.5) of the
subfunctions of a normal form algorithm, we realize that a great part of the total
run time is used for ideal multiplication. Therefore it is essential to optimize ideal
multiplication for efficient normal form implementations.

We want to multiply two ideals. Ideals can be given in either basis presentation
or two–element presentation. So we have three possible cases for the presentations
of the two ideals: two basis presentations, a basis presentation and a two–element
presentation, and two two–element presentations.

Since it is possible to convert the basis presentation into the two–element–presen-
tation and vice–versa, it is sufficient to have a multiplication algorithm for one of
the three cases, say to multiply two ideals in basis–presentation.

From the aspect of efficiency, this is not satisfactory, since the conversion of the ideal
presentation is not an easy task. Indeed, it is possible to find special multiplication
algorithms for each of the three cases for the presentations of the two ideals. Thus,
for each ideal multiplication, the question arises of whether it is better to use the
given presentations or if it is worth computing another presentation for one or both
of the ideals.

This question is modified if we use a particular ideal in a program or a compu-
tational session not for just one multiplication, but also for other computations.
Then it might be better to compute another presentation, even though this might
not be preferable for one multiplication. In practice many ideals are given in more
than one presentation. This raises another question: Which of the special multi-
plication algorithms is best, regardless of any computational costs for presentation
conversion?

There is another multiplication method. It uses a special case of a two–element
presentation, which is called normal presentation. The multiplication of two ideals
given in two compatible normal presentations is extremely fast, but the creation of
two compatible normal presentations is relatively expensive.

Below are more detailed descriptions of the different algorithms. In section 6.2
results of experiments are given and, in conclusion, the heuristics used in KANT to
have a good overall performance of ideal multiplication are discussed.

Algorithmic idea 1.2.2: Basis presentations algorithm
The multiplication of two basis presentations is described in detail in [vS87, p. 35].
It involves the multiplication of each of the Z–basis elements of the first ideal with
each of the Z–basis elements of the second ideal, resulting in n2 algebraic numbers
which form a Z–generating set for the product. With an HNF calculation this is
transformed to a Z–basis of the product.

Many efforts have been done to improve integer HNF computations: for the mod-
ular method see [HHR93], for a formal analysis see [KB79] and [CC82], for other
approaches see [Hop94], [PB74], and [Fru76], and for Blankinship’s method see
[Bla63], [HM94].
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Algorithmic idea 1.2.3: Mixed presentations algorithm
This algorithm is suggested in [Coh95, p. 188]. Let a = aO + αO and b = ξ1Z +
· · ·+ ξnZ. Because b is an ideal we have Ob = b. Then

ab = aOb + αOb = ab + αb = aξ1Z + · · ·+ aξnZ + αξ1Z + · · ·+ αξnZ.

Therefore aξ1, . . . , aξn, αξ1, . . . , αξn is a Z–generating system for ab, and we com-
pute the HNF to get a basis for ab. So the algorithm involves 2n multiplications of
algebraic numbers and an HNF of an n× 2n matrix.

This algorithm is so fast that [Coh95, p. 188] prefers the determination of a two–
element–presentation and a mixed presentations algorithm to the basis–presenta-
tions algorithm in case only the two Z–bases are given. See section 6.2 for the
author’s results.

Algorithmic idea 1.2.4: Four generators algorithm
Let a = aO + αO and b = bO + βO with a, b ∈ Z and α, β ∈ O. Then ab =
abO+ aβO+ bαO+ αβO, which gives an O–generating set of four elements. With
the representation matrices of the algebraic numbers ab, aβ, bα, and αβ, we get a
Z–generating system of ab with 4n elements. We then apply the HNF algorithm to
get a Z–basis.
This algorithm requires one multiplication of algebraic numbers (the multiplication
of a rational integer with an algebraic number can be neglected in complexity, since
it needs only n integer multiplications as opposed to 2n2−n integer multiplications
and additions for a multiplication of two integral algebraic numbers, which can be
seen in [Klü97, lemma 3.5]), three representation matrix computations for algebraic
numbers (the representation matrix of the rational integer ab is the identity matrix
multiplied by ab and its computation can be neglected in complexity), and an
HNF computation of an n × 4n matrix. But, the HNF computation behaves more
like a HNF computation of an n × 3n matrix because of the simple form of the
representation matrix of ab.

Algorithmic idea 1.2.5: Normal presentations algorithm
Normal presentations are only defined for the maximal order oK of an algebraic
number field K. The algorithms are described in detail in [PZ93, pp. 400–406]. The
main results are cited below:

Definition 1.2.6:
Let P be a set of prime numbers, PK the set of all prime oK–ideals dividing any of the
ideals poK where p ∈ P. (Prime ideals are nonzero integral ideals which are not equal
to any product of two nontrivial integral ideals.)

Let a be an integral oK–ideal. The pair (a, α) ∈ N×K× is called a P–normal presen-
tation of a iff the following four conditions are satisfied:
1. a = aoK + αoK;
2. a =

∏
p∈PK p

vp(a) where vp(a) ∈ Z is the p-adic valuation of a;
3. aoK =

∏
p∈PK p

vp(a) where vp(a) ≥ 0;
4. no p ∈ PK occurs in the prime ideal factorization of αa−1.

Proposition 1.2.7:
Let P be a set of prime numbers, let a and b be integral oK–ideals. If (a, α) and
(b, β) are P–normal presentations of a and b respectively, then (ab, αβ) is a P–normal
presentation of ab.
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Theorem 1.2.8:
Let a, b ∈ N, α ∈ oK, α 6= 0, and a = aoK + b−1αoK be an integral oK–ideal. Let P
be the set of all prime numbers dividing ab. Then a has a P–normal presentation.

If it can be assumed that the two factors are both in normal presentation of the
same set of prime ideals, then the multiplication is incomparably fast. A ‘heuristic’
algorithm to compute the normal presentation is given in [PZ93, p. 405]

BERNSTEIN’s ideas

At this point, it is worth mentioning another interesting approach, the “lazy lo-
calization” , presented in [Ber96], which requires further investigation. In the form
presented the algorithms are designed for equation orders of algebraic number fields.
Usually the maximal order is not an equation order. The naïve approach to calcu-
late with non–equation orders involves switching from ideals presented in a equation
order to ideals presented in the maximal order. This is time–consuming and would
destroy the benefits of the method.

1.2.2 Inverse ideals

Theorem (5.6) in [PZ93, p. 269] implies the equivalence of the existence of inverse
ideals for every fractional ideal (whose definition does not include the zero ideal)
and the Dedekind property of a ring. Unlike addition and multiplication, we must
insist on the order O being the maximal order O = oK since the maximal order is
the only order which is a Dedekind ring, as proposed in [Coh95, p. 184].

Algorithmic idea 1.2.9: Inversion with the multiplicator ring
This algorithm is relatively new and is only published in [Fri97, pp. 93–98]. It is
described there in the context of relative ideals, but it is valid for absolute ideals as
well. The algorithm is now used in KANT since it appears to be the most efficient
one.

Algorithmic idea 1.2.10: Inversion with the different
An efficient algorithm which uses the different of the algebraic number field is given
in [Coh95, pp. 202–204]. The relevant statements are cited below:

Definition 1.2.11:
The different d(K) of an algebraic number field K with the maximal order oK is the
integral oK–ideal{

α ∈ K | TrK/Q (αoK) ⊂ Z
}−1 ⊂ oK,

where TrK/Q denotes the trace of the representation matrix of an algebraic number in
K over Q .

Proposition 1.2.12:
Let (ωi)i∈Nn

be an integral basis of the algebraic number field K with the maximal order
oK and the different d. Let the nonzero integral D–ideal a be given in basis presentation
as A ∈ on×nK as in (1.1.2). Let T =

(
TrK/Q (ωiωj)

)
i,j∈Nn

. Then the columns of the
matrix (AtT )−1 form a Z–basis of the ideal a−1d−1.

The algorithm to compute the different is given in [Coh95, p. 204].
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Algorithmic idea 1.2.13: Ideal inversion with normal presentations
Another method uses the determination of the normal presentation. The following
is a consequence of a theorem in [PZ93, p. 406]:

Theorem 1.2.14:
Let P be a set of prime numbers. Let a be an integral oK–ideal with the P–normal
presentation (a, α). Then there exists d ∈ N such that (1, dα−1) is a P–normal presen-
tation of a−1.

1.3 Minimum and norm of an ideal
The rest of this chapter will include different generalization levels. This should be
clarified by the use of different symbols for the ring used: D refers to an integral
domain or a Dedekind ring, O to any order, and oK to the maximal order in an
algebraic number field K.

Definition 1.3.1:
Let Dc ⊂ D be two integral domains, Kc and K the quotient fields of Dc and D,
respectively, with the properties

Kc ∩ D = Dc (1.3.1)
∀δ1 ∈ D ∃δ2 ∈ D, d ∈ Dc : d = δ1δ2. (1.3.2)

Let a be a fractional D–ideal. Then the Dc–minimum ideal of a is the fractional
Dc–ideal a ∩ Kc.
The minimum of the zero ideal in D is the zero ideal in Dc.

Proof that the Dc–minimum ideal is indeed a Dc–ideal.
Firstly, let a be a nonzero integral D–ideal. a ∩ Kc is obviously a commutative
ring since a and Kc are. Because of Dc ⊂ Kc, we have Dc(a ∩ Kc) ⊂ Kc. a being
an ideal implies Da ⊂ a, and therefore Dca ⊂ a and Dc(a ∩ Kc) ⊂ a. We thus get
Dc(a∩Kc) ⊂ a∩Kc. From property (1.3.1) and a ⊂ D, we conclude that a∩Kc ⊂ Dc.
Therefore a ∩ Kc is an integral Dc–ideal.
Secondly, let a be a fractional D–ideal. By definition, there exists a δ ∈ D such
that δa is an integral D–ideal. Property (1.3.2) yields a d ∈ Dc such that da is an
integral D–ideal. It follows that da ∩Kc = d(a ∩Kc) is an integral Dc–ideal. Hence
a ∩ Kc is a fractional Dc–ideal, which completes the proof.

The definition of the minimum ideal covers
• the notion of the minimum of a nonzero integral ideal in an order D = O

of an algebraic number field over Q , which is introduced in [PZ93, p. 398].
The minimum of the integral O–ideal a is the natural number min(a ∩ N).
This is a special case of the general definition where Dc = Z and Kc = Q .
The minimum ideal of a is an integral Z–ideal and therefore a principal ideal
generated by a natural number, which is the minimum.

• the generalization to fractional ideals, which is used in KANT. Again let
D = O be an order of the algebraic number field over Q . Let a

d be a fractional
ideal, where a is a nonzero integral O–ideal and d ∈ N. The minimum of a

d
is the minimum of the set a ∩ N divided by d.
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• the minimum ideal of a relative ideal, where Dc is the maximal order of
an algebraic number field Kc over Q , K an algebraic field extension of Kc,
and D an order of K. The minimum ideal of a relative ideal is described in
section 5.4.

Algorithmic idea 1.3.2: Computing the minimum of an integral ideal
Let D = O be an order of the algebraic number field K and a be a nonzero integral
O–ideal. We want to compute the minimum of a (which is the positive generator of
the Z–minimum ideal).
Let a be given in basis presentation as in (1.1.2): with a Z–basis (ξ1, . . . , ξn) which
corresponds to a matrix A in upper triangular Hermite normal form.
Since (ξ1, . . . , ξn) is also a Q –vector space basis for K, we can find bi ∈ Q with
i ∈ Nn such that

1 =

n∑
i=1

biξi.

Let c ∈ a ∩Q . Then c =
∑n
i=1 cbiξi. Since (ξ1, . . . , ξn) is a basis of the ideal a, this

is equivalent to ∀i ∈ Nn cbi ∈ Z. We conclude that

a ∩Q =

n⋂
i=1

1

bi
Z. (1.3.3)

Let the basis matrix of a and its inverse be written as

A =
(
aij
)
i,j∈Nn

, A−1 =
(
āij
)
i,j∈Nn

.

If we can find ci ∈ K, where i ∈ Nn, such that
n∑
i=1

ciωi = 1

then we have
n∑
j=1

ξj

n∑
i=1

ciāji = 1

with

bj =

n∑
i=1

ciāji ∈ K where
n∑
i=1

biξi = 1.

Therefore finding a representation of the multiplicative identity can be split up in
two subtasks; finding a representation of the multiplicative identity in the basis of
O and the inversion of the representation matrix of a.
If the basis Ω has the property ω1 = 1, formula (1.3.3) for the minimum ideal
simplifies to

a ∩Q =
1

ā11
Z.

Since A was assumed to be in upper triangular HNF, the entry a11 of A satisfies
a11 = ā−1

11 . Therefore the minimum ideal of a is a11Z. The minimum (as a natural
number) is then simply a11.
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Definition 1.3.3:
Let D be a DEDEKIND ring. The norm of a fractional D–ideal a

d , where a is an integral
D–ideal, and d ∈ N is the cardinality of the ring D/a divided by dn.

(This definition is equivalent to the one given as a generalization to fractional ideals
in [Coh95, p. 185].)

Algorithmic idea 1.3.4: Computing the norm of an integral ideal
If D = oK is a maximal order of an algebraic number field K, the norm of an ideal
is the determinant of the basis matrix A (see (1.1.2)) which is the product of the
diagonal entries in case A is in HNF.

Definition 1.3.5:
Let a be an integral ideal. The maximal natural factor of a is the maximum of all
m ∈ N such that a

m is an integral ideal.

Algorithmic idea 1.3.6: Computing the maximal natural factor of an integral ideal
If D = O is an order of an algebraic number field K, the maximal natural factor
can be determined by computing the minimum of the ideal and finding its prime
factorization. Starting with m = 1, for each factor p of this prime factorization it is
checked whether a

pm is an integral ideal.

1.4 Modular HNF computations for addition and
multiplication of ideals over algebraic number fields

This is a modification applicable to all algorithms for ideals over an order D = O
of an algebraic number field K which apply an HNF computation to obtain a basis
of the resulting ideal, notably addition and multiplication.

Algorithmic idea 1.4.1: Modular ideal additions and multiplications
Let a be a nonzero integral ideal and m its minimum as a natural number. Then
mO ⊂ a. Let ξ1, . . . , ξm be a Z–generating set of a, given as a matrix (mij)i∈Nn,j∈Nm

,
where ξj =

∑n
i=1mijωi. To transform the generating set to a basis in HNF we can

use the number m for modular HNF computations.

Note that this is much better than using the gcd of rank minors of a (not HNF)
matrix representing the sum and product, respectively, of the two ideals. The rank
minor gcd is usually much larger because it does not profit from the fact that the
matrices represent ideals.

The following proposition allows an integral multiple of the minimum of the sum
and the product of two ideals to be computed.

Proposition 1.4.2:
Let a and b be nonzero integral O–ideals. Then

min(a + b) | gcd
(
min(a),min(b)

)
and min(ab) | min(a) min(b).

Proof.

a + b ⊃ a =⇒ (a + b) ∩ N ⊃ a ∩ N
=⇒ (a + b) ∩ N ⊃ (a ∩ N) + (b ∩ N)

proves the first statement.
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Let c ∈ (a ∩ N)(b ∩ N). Then ∃a ∈ a ∩ N, ∃b ∈ b ∩ N such that c = ab. Obviously
c ∈ N and c ∈ ab, which proves the second statement.

1.5 Primitive elements
Definition 1.5.1:

Let D be an integral domain. Let a be a nontrivial integral ideal. The element a ∈ D is
called a primitive element of a iff a ∈ a \ a2.

Proposition 1.5.2:
For any invertible nontrivial integral ideal over an integral domain D, there exists a
primitive element.

Proof. a is integral or equivalently a ⊂ D. a is not trivial; therefore a 6= D.
Assume a = a2. Since a is invertible we can multiply by a−1 on both sides and
conclude a = D which is a contradiction.

Algorithmic idea 1.5.3: Computing a primitive element of an integral ideal
If D is a Dedekind ring, every fractional D–ideal is invertible. Therefore for any
nontrivial integral ideal, there exists a primitive element.

In maximal orders over algebraic number fields, the following algorithmic ideas can
be used to compute the primitive element of an integral ideal. If an ideal is given
in two–element presentation, it is easy to see that one of the two generators of the
ideal must be primitive. (Assume this is not the case. Then both generators are in
a2 and the whole of a is in a2, which is a contradiction to the fact that a is integral
and not trivial.)

The algorithm therefore involves the computation of a2 (which is very easy) and
two checks on membership of an algebraic number in an ideal. For this we have
to transform the two–element presentation into an HNF–basis presentation (which
involves the determination of the representation matrices of two algebraic numbers
and an HNF computation of a 2n×n matrix). The part with the biggest complexity
is the HNF computation.

If the ideal is given in HNF–basis presentation, by the same argumentation as above
it is clear that at least one of the basis elements must be primitive. So we simply
choose the basis element which is not an element of a2. Here the computation of a2,
which involves an HNF computation of an n2×n matrix, is the most difficult part.

The question is: Given the basis presentation of a, is it worth determining a two–
element presentation and using the former method? Experiments show that this is
almost always the case.

1.6 Idempotents for coprime ideals
Proposition 1.6.1:

Let D be an integral domain. Let S be a finite set of coprime integral ideals in D; e.g.,∑
a∈S

a = 1D,
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where 1D denotes the trivial integral D–ideal generated by 1.

Then, for every a ∈ S, there exists aa ∈ D satisfying∑
a∈S

aa = 1.

The proof is trivial from the definition of the sum of ideals.

Let D = O be an order of an algebraic number field K given with a Z–basis Ω =
(ω1, . . . , ωn) with the property ω1 = 1. The following algorithm constructs the
idempotent elements:

Algorithm 1.6.2: Idempotents for integral ideals
Input: A set of m coprime O–ideals given in HNF–basis presentation matrices Ai on

some Z–basis Ω = (ω1, . . . , ωn) of O with the property ω1 = 1.
Output: Algebraic numbers aa ∈ a (a ∈ S) represented in the basis Ω with

∑
a∈S aa =1.

Steps:
1: Concatenate the basis matrices of the ideals: A :=

(
A1 | · · · | Am

)
.

2: Apply an HNF algorithm to A which yields a T such that H = AT is a con-
catenation of an identity matrix with n(m− 1) zero columns at the end1.

3: Extract the first column of T and split it horizontally in m vectors of length n:
T1, . . . , Tm.

4: Compute the vectors Ui := AiTi for i = 1, . . . ,m. They represent elements ai
of K regarding the Q –basis of K. Because T is a matrix over Z, the ai
satisfy ai ∈ ai, i = 1, . . . ,m, and

∑m
i=1 ai = 1.

5: End.

Proof. It is important here that the first element of the integral basis Ω of K equals
1. Because of this the first canonical vector

E1 =


1
0
...
0


represents indeed the 1 in K.
We have

H =


1 0

. . . 0 · · · 0
0 1

 = AT =
(
A1 | · · · | Am

)
T .

The first column of H is E1, so the first column B of T satisfies AB = E1.

E1 =
(
A1 | · · · | Am

) T1

...
Tm

 =⇒ E1 =

m∑
i=1

AiTi

1. H is the identity matrix since the ideals are assumed to be coprime. Moreover, this is the
check if the ideals are indeed coprime.
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For i ∈ Nm, the vector Ti represents an element of the ideal ai because Ai is a basis
of ai. The vectors AiTi represent elements ai of O such that ai ∈ ai. Moreover the
sum of the ai is 1. So this proves the validity of the algorithm.

The complexity of this algorithm is determined by the complexity of the HNF
computation.

1.7 Approximation theorem
To formulate the approximation theorem, we need the following notion of a special
class of valuations (one valuation for every prime ideal p of a Dedekind ring), the
p–adic valuation in [Coh95, p. 184].

Definition 1.7.1:
Let D be a DEDEKIND ring and p a nonzero prime D–ideal.
The p–adic valuation is the map

vp : IK ∪ {0D}† → Z ∪ {∞}

which satisfies

∀a ∈ IK : a ⊂ pvp(a), a 6⊂ pvp(a)+1 and
vp(0D) =∞.

The p–adic valuation is defined for elements of K as:

vp :K → Z ∪ {∞}
α 7→ vp(αD).

(1.7.1)

Proposition 1.7.2:
Let D be a DEDEKIND ring. Let P be the set of all nonzero prime ideals in D and S
be a finite subset of P. Let (ep)p∈S ∈ ZS be integral exponents. Then there exists an
a ∈ K such that

vp(a)

{
= ep if p ∈ S
≥ 0 if p ∈ P \ S.

a is called the approximation of the fractional D–ideal a =
∏

p∈S p
ep which satisfies

vp(a) =

{
ep if p ∈ S
0 if p ∈ P \ S.

Both the proof for Dedekind rings and the algorithm for maximal orders of alge-
braic number fields split naturally in two parts: to solve the problem for nonnegative
exponents and to base the general problem on the solution for positive exponents.

†. 0D denotes the zero ideal (the ideal only containing zero), and IK denotes the group of frac-
tional D–ideals, which excludes the zero ideal
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1.7.1 Approximation for nonnegative exponents

The approximation theorem for nonnegative exponents can be formulated in the
more general context of integral domains with the following modification of the
above notion of vp:

Definition 1.7.3:
Let D be an integral domain and p an invertible prime D–ideal.
The p–adic valuation is the map

vp : ID → Z≥0 ∪ {∞}

with vp(0D) =∞‡. If a ∈ ID \ {0D}, then vp(a) is the integer which satisfies

a ⊂ pvp(a) and a 6⊂ pvp(a)+1.

Since p was assumed to be invertible, we have for all v ∈ Z≥0, pv+1 ⊂ pv. A nonzero
integral D–ideal a satisfies a ⊂ D = p0. Therefore we defined a proper map vp for
every invertible prime ideal p. With the properties given in [Coh95, p. 184] we see
that the map vp is an exponential valuation of ID in the sense of [PZ93, p. 248].

This definition is equivalent to the definition 1.7.1 if D is a Dedekind ring. Again
the p–adic valuation is defined for elements of D according to formula (1.7.1).

Proposition 1.7.4:
Let D be a Dedekind domain. Let P be the set of all invertible prime ideals in D and
S be a finite subset of P. Let (ep)p∈S ∈ (Z≥0)S . Then there exists an a ∈ K such that

vp(a)

{
= ep if p ∈ S
≥ 0 if p ∈ P \ S.

Proof. The idea is to consider for each p ∈ S the ideal product

ap =
∏

q∈S\{p}

qeq+1.

Then the ap are nonzero integral ideals which sum to 1D. By proposition 1.6.1,
there exist ap ∈ ap whose sum is equal to 1.

By proposition 1.5.2, and since all p ∈ P are assumed to be invertible, p contains a
primitive element b. We set bp = bep ∈ pep \ pep+1.

For all nonzero integral ideals a and b we have vp(ab) = vp(a) + vp(b). Moreover
vp(bp) = 1 yields

vp(b
ep
p ) = ep;

hence, the element

a =
∑
p∈S

apbp

‡. ID denotes the D–module of integral D–ideals including the zero ideal
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satisfies

vp(a)

{
= ep if p ∈ S
≥ 0 if p ∈ P \ S.

Algorithm 1.7.5: Non–negative approximation
Input: (ep)p∈S ∈ (Z≥0)S .
Output: a ∈ K such that vp(a) = ep for p ∈ S and vp(a) ≥ 0 for p ∈ P \ S.
Steps:

1: Set ap :=
∏

q∈S\{p} q
eq+1 for all p ∈ S 2.

2: Apply algorithm 1.6.2 to ap, p ∈ S, obtain ap, p ∈ S with
∏

p∈S ap = 1.
3: Find primitive elements cp, p ∈ S, for the ideals ap, p ∈ S, as described in 1.5.2 .
4: Set bp := c

ep
p , p ∈ S.

5: Set a :=
∑

p∈S apbp.
6: End.

The complexity of this algorithm is determined by the complexity of finding the
idempotents (see section 1.6).

1.7.2 Simple assembling

Let D be a Dedekind ring. Let S be a finite set of prime ideals of D, and let
(ep)p∈S ∈ ZS . The following algorithm finds an a ∈ K such that vp(a) = ep for
p ∈ S. However, it does not guarantee that vp(a) ≥ 0 for p 6∈ S. The idea of the
algorithm is to split the positive and negative values of ep, to compute a separate
apos and aneg for the positive and negative values, respectively, and to divide apos
by aneg.

Algorithm 1.7.6: Simple assembling
Input: (ep)p∈S ∈ ZS .
Output: a ∈ K such that vp(a) = ep for p ∈ S.
Steps:

1: Set Spos :=
{
p ∈ S|ep ≥ 0

}
Sneg := S\Spos.

2: Set fp :=

{
ep if p ∈ Spos

0 if p ∈ Sneg.

3: Set gp :=

{
0 if p ∈ Spos

−ep if p ∈ Sneg.
4: Apply algorithm 1.7.5 to S together with fp, p ∈ S to obtain apos and to S

together with gp, p ∈ S to obtain aneg.
5: Set a := apos/aneg.
6: End.

2. If D is a Dedekind ring, then we can use ideal inversions to save computation time: set
a :=

∏
q∈S qeq+1 and ap := ap−ep−1 for all p ∈ S
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It is clear that if there is any ep < 0, we can find a prime ideal p ∈ P \ S with
vp(aneg) > vp(apos). This p satisfies vp(a) < 0.

1.7.3 Corrected assembling

Let D be a Dedekind ring. On the basis of algorithm 1.7.6, it is possible to modify
the result a to guarantee vp(a) ≥ 0 for all prime ideals p 6∈ S.

This is done by multiplying a number c ∈ N ⊂ D to a with the property that

vp(c)

{
= 0 p ∈ S
≥ −vp(a) p ∈ P \ S.

Definition 1.7.7:
Let D be a DEDEKIND ring. The set S of prime D–ideals is called complete iff for every
prime number p such that there is a prime ideal p ∈ S over p, it follows that every
prime ideal over p is in S.

Algorithm 1.7.8: Correction of the simple assembling
Input: (ep)p∈S ∈ ZS , and S forms a complete set of prime ideals.
Output: a ∈ K such that vp(a) = ep for p ∈ S and vp(a) ≥ 0 for p 6∈ S.
Steps:

1: Apply algorithm 1.7.6 to S and (ep)p∈S to obtain apos and aneg.
2: Set c := |N(aneg)|

∏
p∈Sneg

N(p)ep †.
3: The result is a := caposa

−1
neg.

4: End.

Proof. First we assure that c has indeed zero valuations on the prime ideals in S.
aneg can be written as â

∏
p∈Sneg

p−ep , where â is an integral ideal, because of the
properties of algorithm 1.7.5. Moreover vp(â) = 0 for p ∈ S.

Let p ∈ S, p be the prime number such that pD ⊂ p. Then the norm of a prime ideal
p is always a power of p. It follows vp(N(â)) = 0 for p ∈ S since S is a complete set
of prime ideals. By construction, we have

c =
N(aneg)∏

p∈Sneg
N(p)−ep

= N

(
aneg∏

p∈Sneg
p−ep

)
= N(â).

(See [PZ93, p. 381] for properties of the norm of an ideal in a Dedekind ring.)

Let q ∈ P \ S. Then

vq
( ∏
p∈Sneg

pep
)

= 0

since q is a prime ideal. This yields

vq
( ∏
p∈Sneg

N(p)ep
)

= 0

†. N() denotes the norm of an ideal, see definition 1.3.3.
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because S is a complete set of prime ideals. It follows that

vq(c) = vq(N(aneg)) and vq(
c

aneg
) = 0,

and hence

vq(a) = vq(c
apos

aneg
) ≥ 0.

This completes the proof of the validity of the algorithm.

1.7.4 Complete algorithm

To finish the algorithm for the approximation theorem, it is necessary to extend a
set of prime ideals to a complete set of prime ideals:

Algorithm 1.7.9: Approximation
Input: a DEDEKIND ring D, a set S of prime ideals, and (ep)p∈S ∈ ZS .
Output: a ∈ K such that vp(a) = ep for p ∈ S and vp(a) ≥ 0 for p 6∈ S.
Steps:

1: Collect all the prime numbers that the prime ideals of S are over in a list L.
2: Set: Scomp := S.
3: Loop: p ∈ L.
4: Check if S contains all prime ideals over p. If so go to the next loop cycle.
5: Factorize the D–ideal pD. Add every prime ideal p which is not in S to Scomp

together with ep := 0.
6: Apply algorithm 1.7.8 to Scomp and (ep)p∈Scomp to obtain a, which is the result.
7: End.

1.8 Existence proofs and algorithms for other problems for
ideals

Proposition 1.8.1 ([Coh96, Corollary 1.8]):
Let D be a DEDEKIND ring. Let a and b be two nonzero integral D–ideals. Then there
exist

• an α ∈ K such that αa is an integral ideal coprime to b, and
• another α ∈ K such that αa−1 is an integral ideal coprime to b.

The proof can be found in the mentioned article.

Algorithm 1.8.2: Solving αa ⊂ 1D, αa + b = 1D in α
Input: Non zero integral ideals a and b.
Output: α ∈ K such that αa ⊂ 1D and αa + b = 1D.
Steps:

1: Prime factorize b, let the prime ideals dividing b be S.
2: Apply algorithm 1.7.9 to obtain α ∈ K with vp(α) = −vp(a) for p ∈ S and

vp(α) ≥ 0 for all prime ideals p not in S.
3: End.
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Algorithm 1.8.3: Solving αa ⊂ 1D, αa−1 + b = 1D in α
Input: Non zero integral ideals a and b.
Output: α ∈ K such that αa ⊂ 1D and αa + b = 1D.
Steps:

1: Prime factorize ab, let the prime ideals dividing ab be S.
2: Apply algorithm 1.7.5 to obtain α ∈ D with vp(α) = vp(a) for p ∈ S and

vp(α) ≥ 0 for all prime ideals p not in S.
3: End.

The complexity is determined by the complexity of the factorization of the ide-
als b for algorithm 1.8.2 resp. ab, for algorithm 1.8.3. Apart from the factoriza-
tions, the algorithms are polynomial. Algorithm 1.8.3 needs only the nonnegative
approximation, which is much easier than the general approximation needed for
algorithm 1.8.2.

Proposition 1.8.4 ([Coh96, Proposition 1.11]):
Let D be a DEDEKIND ring, and let a and b be two fractional D–ideals. Then there exist
µ1 ∈ a, µ2 ∈ b and ν1 ∈ a−1, ν2 ∈ b−1 such that

µ1ν1 − µ2ν2 = 1.

The proof is immediate with the construction of the following algorithm and propo-
sitions 1.6.1 and 1.8.1.

The following algorithm computes the required elements in a maximal order of an
algebraic number field.

Algorithm 1.8.5: Finding µ1 ∈ a, µ2 ∈ b, ν1 ∈ a−1, ν2 ∈ b−1 with µ1ν1 − µ2ν2 = 1
Input: Fractional ideals a and b.
Output: Algebraic numbers µ1 ∈ a, µ2 ∈ b and ν1 ∈ a−1, ν2 ∈ b−1 such that µ1ν1 −

µ2ν2 = 1.
Steps:

1: If either a or b is not integral, set d = lcm(den(a),den(b)). We execute the
algorithm with the ideals da and db to obtain µ′1 ∈ da, µ′2 ∈ db and
ν′1 ∈ a−1

d , ν′2 ∈ b−1

d such that µ′1ν
′
1 − µ′2ν′2 = 1. Return with µ1 =

µ′1
d ,

µ2 =
µ′2
d , ν1 = dν′1, ν2 = dν′2.

2: Apply algorithm 1.8.3 to obtain α ∈ D such that αa−1 ⊂ D and αa−1 +b = D.
3: Apply algorithm 1.6.2 to obtain γ ∈ αa−1 and β ∈ b such that β + γ = 1.
4: Return with µ1 = α, µ2 = β, ν1 = γ

α , ν2 = −1.
5: End.

The complexity of this algorithm is determined by the complexity of the algorithm
to compute idempotents of coprime ideals and the complexity to find elements which
make ideals coprime, which was described above.

Another algorithmic idea for the case a = b that uses the normal presentation of
an ideal was given in [BP91] implicitly.
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Algorithm 1.8.6: Finding µ1, µ2 ∈ a, ν1, ν2 ∈ a−1 with µ1ν1 − µ2ν2 = 1
Input: A fractional ideal a.
Output: Algebraic numbers µ1, µ2 ∈ a and ν1, ν2 ∈ a−1 such that µ1ν1 − µ2ν2 = 1.
Steps:

1: If a is not integral, set d = den(a). Execute the algorithm with the ideal da to
obtain µ′1, µ

′
2 ∈ da and ν′1, ν

′
2 ∈ a−1

e such that µ′1ν
′
1 − µ′2ν′2 = 1. Return

with µ1 =
µ′1
d , µ2 =

µ′2
d , ν1 = dν′1, ν2 = dν′2.

2: Compute the two normal presentation of a as a = aD + αD.
3: Compute a−1 with the two normal presentation as a−1 = D + bα−1, where

b ∈ Z, (a, b) = 1.
4: Apply the extended EUCLIDean algorithm to obtain r, s ∈ Z such that ar+bs = 1.
5: Return with µ1 = ar, µ2 = α, ν1 = −1, ν2 = sbα−1.
6: End.

The methods to compute and invert a normal presentation are described in [PZ93,
pp.400–406]. Apart from the properties of the presentation of the inverse ideal, the
proof of this algorithm is trivial. The most difficult part of this algorithm is the
determination of the normal presentation (see definition 1.2.6).

Proposition 1.8.7 ([Coh96, Theorem 1.2]):
Let D be a DEDEKIND ring. Let a and b be two fractional D–ideals, and let a, b ∈ K not
both equal to zero. Set d = aa + bb. Then there exist u ∈ ad−1 and v ∈ bd−1 such
that au+ bv = 1.

The proof is easy using proposition 1.6.1 and the constructions of the following
algorithm.

Algorithm 1.8.8: Solving au+ bv = 1 with d = aa + bb in u ∈ a
d , v ∈

b
d

Input: Fractional D–ideals a,b; a, b ∈ K.
Output: d = aa + bb, u ∈ ad−1, v ∈ bd−1 such that au+ bv = 1.
Steps:

1: If a = 0 return u = 0, v = 1
b .

2: If b = 0 return u = 1
a , v = 0.

3: Compute d = aa + bb, c1 = aad−1, and c2 = bbd−1.
4: Apply algorithm 1.6.2 to obtain e ∈ c1, f ∈ c2 such that e+ f = 1.
5: Return u = e

a and v = f
b .

6: End.

Proof. (Validity of the algorithm) Let a, b 6= 0. Since aa ⊂ d, the ideal c1 is integral,
and the same applies to c2. From the construction, it follows that c1 + c2 = 1D, and
therefore the algorithm 1.6.2 is applicable.

This algorithm is polynomial since algorithm 1.6.2 is.

Let O be an order of an algebraic number field K of degree n. Let Ω be a Z–basis
of O as in formula 1.1.1. The following algorithm gives a solution of an equation if
it exists.



22 CHAPTER 1. IDEALS IN ALGEBRAIC NUMBER RINGS

Algorithm 1.8.9: Solving
∑k
i=1 αiβi = α in βi

Input: α, α1, . . . , αk ∈ K, k ∈ N.
Output: β1, . . . , βn ∈ D such that

∑k
i=1 αiβi = α.

Steps:
1: Compute d = lcm

(
den(α),den(α1), . . . ,den(αk)

)
.

2: Compute the representation matrices of the algebraic numbers dα1, . . . , dαk,
and concatenate them to a matrix M.

3: Compute the upper column HNF of M with transformation matrix T . Let the
first n columns, the nontrivial part, of MT be H. Let the first n columns
of T be denoted with T ′ ∈ Kkn×n.

4: Let A be the representation vector of dα: dα = ΩA. Solve the matrix equation
HC = A in C ∈ Q n.

5: If C 6∈ Zn, return with the message that the equation cannot be solved.
6: Compute the vector B = T ′C.

7: Split B =

 b1
...
bkn

 ∈ Dkn into vectors Bi =

bn(i−1)+1
...
bni

 ∈ Dn vertically, for

i ∈ Nk, representing the algebraic numbers βi = ΩBi.
8: End.

Proof. Consider the ideal a = dα1D+ · · ·+ dαkD. A solution to the equation exists
iff dα ∈ a. Using the Z–basis presentation matrix H of a, it is easy to decide whether
dα ∈ a. The rest of the proof deals with the transformation of a linear combination
in the Z–basis of a to a linear combination in the generating set α1, . . . , αn of a.
The matrix M represents the ideal a. H is another representation of a which allows
the linear combination HC = A to be computed easily because of its triangular
shape. Consequently,

dα = ΩA = ΩHC. (1.8.1)

The algorithm constructed H and T with

MT = (H | 0 | · · · | 0) and MT ′ = H. (1.8.2)

M = (M1 | · · · |Mk) consists of k n× n–matrices Mi satisfying ΩMiZn = dαiD.
Since βi = ΩBi, this gives

dαiβi = ΩMiBi. (1.8.3)

We conclude that
k∑
i=1

dαiβi =

k∑
i=1

ΩMiBi (formula (1.8.3))

= Ω

(
k∑
i=1

MiBi

)
= ΩMB

= ΩMT ′C

= ΩHC (formula (1.8.2))
= dα (formula (1.8.1)).



Chapter 2

Reducing algebraic numbers with ideals

This chapter deals with the following general task: Let D be an integral domain
(a commutative unital ring without nontrivial zero divisors), K its quotient field,
and a be a fractional D–ideal. Assume the statement: “if the element α ∈ K has a
certain property so has α + β for any β ∈ a”. The task is to find a α + β which is
“small” regarding a certain notion of size.

The modulo calculus is a well–known theory addressing a similar task — in elemen-
tary number theory, D = Z. The basic steps can be applied to more general rings
as well.

The problem is to extend the theory of modulo calculus to fractional ideals and
to fractional elements, but there is no canonical way to do this. In fact the usual
fractional extension is not what we need for the general task mentioned above. In
the sequel a distinction will be made between the modulo calculus, which is the
usual fractional extension, and the reduce calculus.

The first section deals with the case D = Z to clarify the difference between the
modulo and reduce calculi. The second section states the basic definitions and propo-
sitions for the general case of an integral domain D. The third section deals with
the special case of orders of algebraic number fields, including detailed algorithms
most of which are implemented in KANT.

2.1 Reduce calculus for the rational numbers
This section goes back to elementary number theory. The well–known modulo cal-
culus deals with a relation defined by

a ≡m b ⇐⇒Def ∃c ∈ Z : a− b = cm where a, b ∈ Z,m ∈ N. (2.1.1)

This is an equivalence relation, and for m > 1 the classes form the finite unital ring
Zm. For the units of this ring (which are the rational integers coprime to m) the
multiplication has an inverse operation. From now on let m > 1.

It makes sense to write fractions with denominators coprime to m in the modulo
calculus. We have Fermat’s proposition 1

1

c
≡m cϕ(m)−1, where c ∈ Z, (c,m) = 1. (2.1.2)

1. ϕ denotes the Euler phi–function

23
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From a different standpoint it is possible to say that the relation ≡m is extended
to the set of rational numbers whose denominators are coprime to m, which will be
denoted by

Z(m)
=Def

{
a
n | a ∈ Z, n ∈ N, (a, n) = 1, (n,m) = 1

}
. (2.1.3)

With S =
{
n ∈ Z | (n,m) = 1

}
, in [PZ93, p. 226] this set is called the S–localization

of Z, in [Lan94, ch. II,§4] it is called quotient ring of Z by S.
Together with formulas (2.1.1) and (2.1.2), we have defined a new relation which
will be denoted by ≡M

m. The superscript only refers to the behavior of the relation on
fractional numbers. The superscriptM should indicate that it refers to the extension
of the Modulo calculus towards fractional elements. Another superscript R refers
to the Reduce calculus, which will be defined later.

The relation ≡M
m is an equivalence relation on the elements of Z(m). It has exactly m

equivalence classes which form the finite unital commutative ring Z(m)
/≡M

m, which
is isomorphic to the ring Zm.

But this is not the only possible extension of the relation ≡m towards Q :

a≡R

m b ⇐⇒Def ∃c ∈ Z where a− b = cm where a, b,m ∈ Q . (2.1.4)

The relations ≡R
m and ≡M

m are identical for integral numbers. But, if denominators
occur, they are very different: 1

2 ≡
M
5 3 but 1

2 6≡
R
5 3. Although 12

5 ≡
R
5 − 13

5 , we cannot
write 12

5 in connection with ≡M
5 because it is not well–defined. And 1

3 ≡
R
3
4

10
3 is true,

but ≡M
3
4

is not defined at all.

If a, b,m ∈ Q and d is the least common denominator of a, b, and m then

a≡R

m b ⇐⇒ ad≡M

md bd. (2.1.5)

2.1.1 Modulo and reduce functions

Integral modulo functions fix representatives of the classes of Z/≡m. They come in
two flavors (as smallest positive and smallest absolute) and can be assumed to be
known.

To fix representatives of the classes of Z(m)
/≡M

m we use the following definition,
which is a simple extension from the integral modulo functions.

Definition 2.1.1 (Modulo function):
Let m ∈ N. Then we define two functions

+

modM

m : Z(m)→ Z≥0 (2.1.6)
a 7→ b with a≡M

m b and 0 ≤ b < m (2.1.7)

(referring to the residue system of Zm with the smallest nonnegative values) and

±

modM

m : Z(m)→ Z (2.1.8)

a 7→ b with a≡M

m b and − m

2
< b ≤ m

2
(2.1.9)

(referring to the residue system of Zm with the smallest absolute values). The notation

modM

m refers to either
+

modM
m or to

±

modM
m by convention.
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We extend modM

m(a) to a nonpositive m by

modM

m(a) =Def

{
modM

−m(a) if m < 0

a if m = 0.

A modulo function modM is a family

modM : Z→ Q Z

m 7→ modM

m

of such functions.

Definition 2.1.2 (Reduce function):
Let m ∈ Q and let modM be a fixed modulo function.

modR

m : Q → Q

a 7→ modM

md(ad)

d
,

where d is the least common denominator of a and m. A reduce function is a family
of functions

modR : Q → Q Q

m 7→ modR

m

A reduce function modR satisfies

a≡R

m b ⇐⇒ modR

m(a) = modR

m(b), where a, b,m ∈ Q .

To investigate the structure of Q /≡R
m, we first let a,m ∈ Q and a the class of a

regarding ≡R
m. We can define addition with

a+ b =Def a+ b

This definition is independent of the choice of the representatives: Let a1, a2, b1, b2 ∈
Q , a1≡R

m a2, b1≡R
m b2. There exist c1, c2 ∈ Z such that a1−a2 = c1m and b1− b2 =

c2m. Therefore (a1 + b1)− (b1 + b2) = (c1 + c2)m, and thus a1 + b1 ≡R
m a2 + b2.

The usual construction of multiplication

a · b =Def a · b,

however, depends upon the choice of representatives:

For m = 7,
(

3
2

) (
2
3

)
=
(

3
2

2
3

)
= 1. While, on the other hand, 3

2 ≡
R
7

17
2 and

(
17
2

) (
2
3

)
=(

17
2

2
3

)
=
(

17
3

)
6= 1.

Thus, this definition of multiplication with the usual construction does not lead to
a multiplication with the usual properties, so that Q /≡R

m can only be considered
as an additive Abelean commutative group.
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2.2 Reduce calculus in integral domains
Let D be an integral domain (a commutative unital ring without nontrivial zero
divisors). Let K be the field of fractions of D as defined in [Lan94, ch. II, §4] .
D can be embedded in K, e.g. an element of K which can be represented as α

1 is
identified with α ∈ D. These elements will be called integral elements, as opposed
to all elements of K which are called fractional elements.

An element α ∈ K can be represented by (usually infinitely) many symbolic frac-
tions. To pick one of them, the general notion of denominator will be needed.

Definition 2.2.1:
A denominator mapping is a function: den: K → D \ {0} with the property ∀α ∈
K, den(α)α ∈ D.

There exists at least one denominator mapping — this is a simple consequence of
the selection axiom of set theory.

Every element α ∈ K can be represented by the fraction den(α)α
den(α) , where den(α)α ∈ D

and den(α) ∈ D.
Example 2.2.2. Let D be an algebraic number ring. N can be embedded in D.
For every α ∈ K, it is possible to find a natural number d such that dα ∈ D.
Consequently, the denominator should be defined as the least natural number d which
satisfies dα ∈ D.

2.2.1 Modulo calculus

Definition 2.2.3:
Let D be an integral domain and K its quotient field. Let a denominator mapping den
be fixed according to definition 2.2.1.

Let α, β ∈ K and a a nonzero integral D–ideal. α is called congruent β modulo a,
denoted α≡M

a β, iff
• den(α)D + a = 1D, 2

• den(β)D + a = 1D, and
• den(α) den(β)α− den(α) den(β)β ∈ a.
Example 2.2.4. Let D = Z. This definition of the modulo relation is consistent
with the modulo calculus in Z. Every nonzero integral ideal is generated by a natural
number, let a be the Z–ideal generated by m ∈ N: a = mZ.
Example 2.2.5. Let D be a ring of algebraic numbers over Z, let the denominator be
fixed as in example 2.2.2. We want to construct an element in D which is equivalent
to γ

d where γ ∈ D, d ∈ N. We can invert the denominator d modulo the nonzero
integral D–ideal a, e.g. find a positive integer n that nd ≡M

a 1. This last property
is equivalent to nd ≡M

a∩Z 1. The ideal a ∩ Z is principal and generated by a natural
number m, so we have n := dϕ(m)−1. As in the integer case this is only possible if
d and m are coprime which is implied by a + dD = 1D.

Proposition 2.2.6:
Let D be an integral domain and a a nonzero integral D–ideal. Let D(a) be the set of
fractional elements whose denominator is coprime to a:

D(a) :=
{
α
δ ∈ K | α, δ ∈ D, δ 6= 0, δD + a = 1D

}
.

2. αD denotes the fractional D–ideal generated by α ∈ K; 1D is the trivial ideal generated by 1.
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With S =
{
δ ∈ K | δD+a = 1D

}
, in [PZ93, p. 226] this set is called the S–localization

of D, in [Lan94, ch. II, §4] it is called quotient ring of D by S.
Then ≡M

a is an equivalence relation on D(a).

The quotient D(a)
/≡M

a is a unital commutative ring isomorphic to D/≡M
a .

Proof. Reflexivity is trivial because 0 is an element of every ideal. Symmetry is
trivial because −1 is always a unit in D. Transitivity is easy because, for α1−α2 ∈ a
and α2−α3 ∈ a, by the definition of an ideal, α1−α3 = (α1−α2) + (α2−α3) ∈ a.

The last statement uses the fact that D/a is a unital commutative ring. In every
equivalence class there are integral elements. This clearly defines a 1–1 correspon-
dence which is an isomorphism.

Definition 2.2.7:
Let D be an integral domain. A modulo function is a family of functions

modM : ID \ {0D}† → D(a)D

a 7→ modM

a ,

where for any integral D–ideal a the function modM

a : D(a)→ D satisfies the properties

∀α, β ∈ D(a), α≡M

a β ⇐⇒ modM

a (α) = modM

a (β) and

modM

a (α) lies in the same class of D(a)
/≡M

a as α.

For any integral domain D, there exists such a modulo function — this is an imme-
diate consequence of the selection axiom of set theory and the fact that ≡M

a is an
equivalence relation and splits D(a) in disjoint classes.

2.2.2 Reduce calculus

Again the relation ≡M
a can be seen as an extension of the integral modulo calculus

to K, and again this is not the only possible extension.

Definition 2.2.8:
Let α, β ∈ K and let a be a fractional D–ideal or the zero ideal. Then α ≡R

a β iff
α− β ∈ a.

Remark:
Let α, β ∈ D and let a be a nonzero integral D–ideal. Then α≡R

a β ⇐⇒ α≡M
a β.

The ≡M
a relation can be defined in terms of the ≡R

a relation:

Lemma 2.2.9:
Let α, β ∈ K and a be a fractional D–ideal. Let δ be a common multiple of the
denominators of α, β, and a. Then

α≡R

a β ⇐⇒ δα≡M

δa δβ.

†. {0D} denotes the zero ideal (the ideal only containing zero) and ID denotes the set of integral
D–ideals with the zero ideal.
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Proposition 2.2.10:
≡R

a is an equivalence relation for any fractional D–ideal a.

Proof. Reflexivity is trivial because 0 is an element of every ideal. Symmetry is
trivial because −1 is always a unit in D. Transitivity can be shown with the ideal
properties.

Definition 2.2.11:
Let D be an integral domain and K its quotient field. A reduce function is a family of
functions

modR : IK
‡ → KK

a 7→ modR

a ,

where for any a ∈ IK the function modR

a : K → K satisfies the properties

∀α, β ∈ K, α≡R

a β ⇐⇒ modR

a(α) = modR

a(β) and (2.2.1)
modR

a(α)≡R

a α. (2.2.2)

An element α ∈ K is called reduced (modulo the fractionalD–ideal a) iff modR

a(α) = α.

Proposition 2.2.12:
Let D be any integral domain and K its quotient field.
• There exists a reduce function modR.
• For any reduce function modR, any fractional D–ideal, and any α ∈ K, the

element modR

a(α) ∈ K is reduced.
• Let a be a fractional D–ideal and modR a reduce function. In every class of

K/≡R
a there exists exactly one reduced element.

Proof. The first statement is a consequence of the selection axiom of set theory and
the fact that ≡R

a is a equivalence relation and splits K in disjoint classes.

For the second statement, let β = modR

a(α). From property (2.2.2) we know β ∈
α
(
K/≡R

a

)
and α≡R

a β. By property (2.2.1), modR

a(α) = modR

a(β), which completes
the proof.

The third statement follows from the second statement and property (2.2.1).

Reduce functions are very important for computational applications. If there is an
efficient algorithm to compute the reduce function, it can be used to decide the
relation ≡R

a .

If K has a strict ordering < and any subset of K contains a minimum regarding <,
a reduce function can be defined using this ordering

reda(α) =Def min
<
{β ∈ K | α≡R

a β} .

If we have a modulo function for integral ideals and elements, we can construct a
reduce function with the following lemma.

‡. IK denotes the group of fractional D–ideals without the zero ideal.
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Lemma 2.2.13:
Let D be an integral domain and K its quotient field. Let modM be a modulo function
as in definition 2.2.7 . Let a be a fractional D–ideal and α ∈ K. Letting δ ∈ D be the
product of the denominators of a and α,

modR

a(α) =Def
modM

δa(δα)

δ
∈ K,

is a reduce function.

2.3 Representatives in algebraic number rings
Let K be a finite algebraic field extension of Q . Let O be an order of K. This is a
special case of the previous section since K is the quotient field of O.
Let Ω = (ω1, . . . , ωn) be a Z–basis of O. An α ∈ O is represented by a vector

A =

a1

...
an

 with a1, . . . , an ∈ Z

as

α =

n∑
i=1

aiωi = ΩA. (2.3.1)

The problem of finding reduce functions can be dealt with in two steps:
• Finding modulo functions for integral algebraic numbers and integral ideals.

(This is the main subject of this section.)
• Constructing a reduce function from an integral modulo function. (This is

simply done with lemma 2.2.13.)
There is a variety of possible modulo functions to choose from in algebraic number
rings, the classification of which is dealt with in the next subsection. The key for
this classification is the notion of quality.

2.3.1 Quality measurements of representations of algebraic numbers

It is important to stress that we are not talking about the quality of algebraic
numbers — the reduce functions are not independent of the basis that the algebraic
numbers are presented with.

A quality measurement can be either
• a relation >χ, where the quality of the representations of two algebraic num-

bers (and not the numbers themselves) is compared or
• a function

χ : Zn → R≥0.

If we have a quality function χ, we can define a quality relation >χ as

A >χ B ⇐⇒Def χ(A) > χ(B).
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The aim of the quality relation/function is that small values of χ resp. small repre-
sentations of algebraic numbers regarding >χ should correspond to computational
“desirable” algebraic numbers.

What do we expect from a good quality function?

It should

1. measure how much memory space is required to store the representation,
with small values of χ corresponding to little required memory space;

2. give a prediction on the time and memory efficiency of computations with
the representation, with small values of χ corresponding to fast and efficient
computations;

3. give a prediction on the quality of the results of arithmetic with the repre-
sentations; i.e., the representation of the sum/product of algebraic numbers
with small values of χ of their representations should also have a small value
of χ;

4. give results independent from the basis Ω; even an “odd” basis should not
destroy the usefulness of the quality function, in which case we can speak
of the quality of an algebraic number and not only of the quality of the
representation;

5. be computationally inexpensive to decide >χ resp. compute χ;
6. be easy to select (for a representation A of a given algebraic number) another

representation B of an algebraic number with B <χ A.

In the sequel different possible quality functions/relations are introduced, none of
which is perfect. For each of them comments are provided on how each of the
criteria for a quality function/relation given above is satisfied by the particular
quality function/relation. The comments are based on both practical observations
and theoretical considerations.

Vector norm of the representation

This quality function is either the 1–norm (
n∑
i=1

|ai|), 2–norm (

√
n∑
i=1

a2
i ), or the ∞–

norm (max{|ai|}) of the representation vector A.

Evaluation of the criteria:

1. Perfect. The vector norm of the representation is a good estimate of the
memory space required, in particular the 1–norm.

2. Perfect. Addition of algebraic numbers involves vector addition of the repre-
sentation. Multiplication is usually done with a multiplication table — the
actual multiplication involves a matrix multiplication with the representa-
tion vector.

3. Perfect for addition. Good for multiplication if the basis Ω is such that the
entries of the multiplication table are small.

4. Basis dependent.
5. Very easy for the 1–norm and the ∞–norm; relatively easy for the 2–norm.
6. Trivial since the norms are monotone in each of the coefficients of the rep-

resentation.
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Lexicographic ordering of the representation

This is a quality relation, only, defined as:a1

...
an

 >χ

 b1
...
bn

 ⇐⇒Def

∃i ∈ Nn :
((
|ai| > |bi| or ai = −bi > 0

)
and ∀j ∈ Nn, j > i→ aj = bj

)
Evaluation of the criteria:
1. Bad. There are infinitely many algebraic numbers with a lower quality than

e.g. any basis element of Ω which is not a rational number.
2. Bad for the same reason as criteria 1. On the other hand, there is a nice

feature. If the first basis element ω1 is 1 (every order in a number field has a
basis with this property,) then the representations with the lowest qualities
are representations which represent the rational integers.

3. Good for addition, bad for multiplication.
4. Basis dependent.
5. Very easy to decide.
6. Trivial since the norms are monotone in each of the coefficients of the rep-

resentation.

Complex absolute value/T1–norm/rooted T2–norm

These two quality functions are based on the field embeddings of the algebraic
number field K into the complex numbers C via a monomorphism

φ : K ↪→ C.

The complex absolute value

χ(A) =
∣∣φ(ΩA)

∣∣
can serve as a quality function.

χ depends on the choice of a particular embedding φ and usually there exist different
embeddings.

An approach to overcome the dependency is to consider the conjugate fields of K.
[Coh95, Theorem 4.1.8] states that there are exactly n field embeddings, where n is
the degree of K. Let Φ be the set of all field embeddings φ : K ↪→ C. Then we have
two quality functions which depend neither on a field embedding nor on the basis
Ω:
T1–norm χ(A) = T1(ΩA) =

∑
φ∈Φ

∣∣φ(ΩA)
∣∣ and

rooted T2–norm χ(A) =
√

T2(ΩA) =
√∑

φ∈Φ

∣∣φ(ΩA)
∣∣2.

Evaluation of the criteria for the above quality functions:
1. Good if the basis is relatively “well–behaved”, but still reasonable if not.
2. Good, in particular for multiplication.
3. Excellent for the multiplication because we have the multiplicativity for both

χ. For addition we have the triangle inequality. This is a bad estimate if the
algebraic numbers are close to being orthogonal, but reasonable in practice.
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4. Basis independent because the value is not based on the representation, but
on the algebraic number itself. But the complex absolute value is dependent
of the choice of the field embedding of K in C. The T1/rooted T2–norm is
independent on the choice of the embedding.

5. More expensive than the representation vector norm and the lexicographic
ordering.
We need the approximated complex values of the basis elements ω1, . . . , ωn,
which are not difficult to obtain and also important for other algorithms with
O, so that they are likely to be given anyway. Thus, the complex absolute
value is quite easy to compute.
For the T1/rooted T2–norm we need the complex values of the conjugates
and some real number computations. Because the precision is not required to
be high, this should not be much more expensive than the complex absolute
value.

6. Difficult.

Norm

The norm of an algebraic number is the determinant of its representation matrix,
which is the basis matrix of the principal O–ideal generated by this algebraic num-
ber.

Evaluation of the criteria:
1. Bad. Units of O have norm 1, but usually there are infinitely many of them.

Of course almost all of them can be said to be incredibly huge. But the
problem with units is only the tip of the iceberg. In general there is only a
weak correlation of the norm and the memory space.

2. Bad, as above.
3. Perfect for the multiplication because the norm is multiplicative. Bad for

addition: the sum of two units might have a huge norm.
4. Basis independent.
5. The computation of the representation matrix involves a matrix multiplica-

tion and a determinant calculation. This is more expensive than all other
quality functions considered in this section.

6. Difficult. Probably as difficult as unit computation (see [Coh95, Algorithm
4.9.9]).

Comparison

In most cases the vector norm of the representation is the reasonable choice for a
quality function regarding the criteria given. Because of the efficient algorithm 2.3.1,
the lexicographic order is a good alternative for the task of reducing algebraic
numbers modulo ideals. If we require the quality function to be independent of the
representation of the algebraic number, then the T1/rooted T2–norm should be
preferred.

2.3.2 HNF basis reduction

This subsection describes one important modulo function — the HNF basis reduc-
tion.



2.3. REPRESENTATIVES IN ALGEBRAIC NUMBER RINGS 33

Let a be an integral ideal. We use the Z–basis (as in equation 1.1.2) ξ1, . . . , ξn for
a, where ξi ∈ O. The ξi have representations in the basis Ω of O such that

a =

n∑
i=1

Zξi =

n∑
i=1

Z
n∑
j=1

aijωj . (2.3.2)

The ideal a is said to be represented by the Z–matrix A = (aij)i,j∈Nn
.

Because of the elementary algebraic properties of an ideal, this matrix can be trans-
formed to an upper triangular HNF which still represents a basis for a.

Denote the projection of the i-th component of the vector

a1

...
an

, which is an

epimorphism from Kn to K, by pri : Kn � K, i.e.

pri

a1

...
an

 = ai.

Algorithm 2.3.1: HNF reduction of an algebraic number modulo an ideal
Input: An HNF basis of an integral ideal ξ1 . . . ξn and an integral algebraic number α

represented as a vector.
Output: A canonical representative β of the class of α in O/≡M

a .
Steps:

1: Init β := α.
2: Loop i = n, . . . , 1.
3: Find q ∈ Z that

∣∣pri(β − qξi)
∣∣ is minimal3.

4: Assign β := β − qξi.
5: The representative of α’s class is now in β.
6: End.

Remarks:
(1) The uniqueness is guaranteed in a very straightforward way. The algorithm

returns the smallest representation regarding the lexicographic order mentioned
in the previous subsection.

(2) The algorithm is relatively fast. The complexity is as follows (counting integer
operations only and disregarding the size of the integers): n divisions, n(n +
1)/2 ≈ n2/2 multiplications and additions.

(3) Coefficient growth of the intermediate entries of the representation of β may
occur, most of all the first entry, which suffers from n−1 relatively uncontrolled
additions. Let N be an upper bound on the absolute values of the HNF matrix
entries and of the entries of the vector. The worst case multiplicator of the
first loop can be N (although this is very unlikely). So the coefficients of the
vector are now bounded by N2. Iterating this consideration, we see that the
coefficient size is roughly bounded by Nn−1.

This consideration ignores the fact that the matrix is in HNF. Say the first
multiplicator has a large absolute value (close to N) and the penultimate entry

3. It is possible to take another convention here: find q ∈ Z such that pri(β−qξi) has its minimal
nonnegative value. This convention defines another possible HNF reduction.
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an−1,n of the last column of the HNF matrix has large absolute value (close
to N) as well. Then the (n− 1)-st entry of b is now close to N2. But because
the penultimate diagonal entry an−1,n−1 is larger than an−1,n, the second mul-
tiplicator must actually be smaller than N . This thought can be extended
analogously to all entries of the vector: if the entry has significant growth be-
cause of large entries in the matching row of the HNF matrix, the diagonal
entry is large as well and keeps the multiplicator small. So the entries of the
vector are usually not larger than N2.

In practice coefficient growth does not cause any trouble.

2.3.3 General basis reduction

The next three subsections describe a class of modulo functions which is a general-
ization of the HNF basis reduction.

Let a be an integral ideal with Z–basis as in equation (2.3.2). There is a much more
general method of reducing an element modulo this ideal not requiring the HNF
property of the basis matrix of a. This algorithm is based on the fact that the ideal
basis can be considered as a vector space basis of the field K.

Algorithm 2.3.2: General basis reduction of an algebraic number modulo an ideal
Input: A basis of an integral ideal ξ1, . . . , ξn and an integral algebraic number α repre-

sented as a vector.
Output: A representative β of the class of α in O/≡M

a .
Steps:

1: Represent α as a linear combination of the ξ1 . . . ξn with rational coefficients
q1, . . . , qn : α =

∑n
i=1 qiξi.

2: Assign β = α−
∑n
i=1bqieξi.

3: End.

Remarks:
(1) The symbol bqe denotes the nearest integer to q preferring q − 1

2 to q + 1
2 in

case q is exactly an integer plus a half. So − 1
2 < q − bqe ≤ 1

2 .

(2) The algorithm provides an element of the class of α because the element∑n
i=1bqieξi is an element of the ideal a. This element is uniquely determined

because ξ1, . . . , ξn is a basis of K so the qi are uniquely determined.

(3) The complexity of this algorithm is determined by the complexity of finding
the linear combination for α.

(4) If α≡M
a 0 the algorithm returns β = 0.

(5) Consider any quality function χ satisfying
• χ(A + B) ≤ χ(A) + χ(B) for A,B ∈ Kn (triangle inequality) and
• χ(λA) = |λ|χ(A) for A ∈ Kn, λ ∈ K (linearity with respect to multipli-

cation).
Examples are the norm of the representation and the rooted T1/T2–norm.
Then the quality of β (identifying the quality of an algebraic number as the
quality of its representation here) is bounded

χ(β) = χ

(
n∑
i=1

(qi − bqie) ξi

)
≤

n∑
i=1

|qi − bqie|χ(ξi) ≤
1

2

n∑
i=1

χ(ξi).
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The practical value of this algorithm is that we are able to choose an ideal
basis with elements of a better quality than the HNF basis. The inequality
guarantees a good quality of the reduced element.

So our problem splits into two other problems: how to find a good ideal basis and
how to compute the coefficients for a linear combination. We begin with the latter.

2.3.4 Finding linear combinations

As ξ1, . . . , ξn is a Z–basis for the ideal a, it is also a field basis for K as a Q –vector
space. An element α ∈ K is represented in the basis Ω as

∑n
i=1 aiωi with ai ∈ Q .

So what we have to do is nothing more than a basis transformation.

Because ξ1, . . . , ξn are given in the basis Ω, we have a Q –matrix M with

(ξ1, . . . , ξn) = (ω1, . . . , ωn)M.

So we have

α = Ω

a1

...
an

 = (ξ1, . . . , ξn)M−1

a1

...
an

 ,

which gives us the linear combination as the result of an inversion of a rational
matrix and a matrix multiplication.

2.3.5 Finding a small ideal basis

Usually the HNF reduced basis for an ideal is represented by a reasonably small
matrix. There are smaller bases4, but in general it is cumbersome to minimize any
size measure. We have to find a trade–off between computation costs and basis
quality.

The LLL–algorithm is a good method to get a matrix which represents a better
basis at reasonable computation costs. See [Coh95, p. 81] or [PZ93, sec. 3.3] for
introductions.

The LLL–algorithm is polynomial, but usually much slower than HNF computation.
It is especially useful if the better basis is not just used to reduce a single algebraic
number. There are different versions of LLL to be taken into consideration. The
Gram–Schmidt–coefficients might be computed either with rational arithmetic or
approximated real arithmetic, for instance. The details will not be discussed here.

Henri Cohen suggests in [Coh96] another method called partial reduction, which is
supposed to be more quickly than LLL and still have coefficients with pretty small
absolute values, although nothing can be proven as with LLL. The experiments
performed did not seem very promising, so this approach was not followed.

2.3.6 Reducing algebraic numbers with rationals

If the ideal to reduce with is a principal ideal with a rational generator, there is an
obvious reduce algorithm which is much easier than the above algorithms.

4. Let χ be a quality function. The size of a basis ξ1, . . . , ξn is measured by the sum of the
χ–values of the vectors representing ξi for i ∈ Nn.
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Algorithmic idea 2.3.3: Reducing algebraic numbers with rationals
If the algebraic number ΩA (where Ω = (ω1, . . . , ωn) is the basis of O and A =a1

...
an

 a rational vector) is to be reduced by r ∈ Q we can use the reduce function

modR

r (ΩA) = Ω

modR

r (a1)
...

modR

r (an)

 .

Of the quality functions considered in subsection 2.3.1 we observe that
• the algorithm minimizes the quality function “vector norm of the represen-

tation”;
• as the HNF–basis of an ideal generated by a rational number is a diagonal

matrix, the result is the same as the result of the HNF–reduction algorithm.
Therefore it gives the first number considering the lexicographic order, also.



Chapter 3

Equivalence and normal forms of matrices

Let D be an integral domain (a commutative unital ring without nontrivial zero
divisors) and K its quotient field. This chapter deals with the important correspon-
dance of finitely generated K–modules and classes of matrices over K. The key is
to define an equivalence relation ≈ on Kn×m such that Kn×m/≈ is isomorphic to
the D–module of finitely generated D–modules of rank not larger than n. The even
more general approach is to extend the equivalence relation to matrices of different
size, the set

⋃
m∈NKn×m. This isomorphism is an important theoretic concept for

the understanding of the structure of the module of finitely generated modules.
Even more important though for the practical investigation is that modules can be
represented by matrices.

The relation ≈ comes in three flavours: the

• module definition is aimed at the representation mapping,
• transformation definition is aimed at efficient algorithms,
• matrix multiplication definition supplies an additional theoretic background,

first of all the use of the determinant.

The equivalence of these three definitions perfects the correspondance of modules
and matrices. Unfortunately, the equivalence does not hold for the generality of
integral domains — we will deal with the question of how much can be done.

3.1 Matrix equivalence definitions
Definition 3.1.1:

Let M = (A1, . . . ,Am) ∈ Kn×m, where the Ai are the m columns of M. Then the
(finitely generated) D–module represented by the matrix M is

Mod (M) =Def DA1 + · · ·+DAm ⊂ Kn.

Two matrices M1 and M2 are called module equivalent iff their represented modules
are equal:

M1 ≈mod M2 ⇐⇒Def Mod (M1) = Mod (M2) .

Note that this definition includes matrices with a different number of columns.

37
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Definition 3.1.2:
Two matrices are called transformation equivalent: M1 ≈trafo M2 iff M1 can be
transformed toM2 with a finite number of transformation steps. A single transformation
step from M to M′ is (assuming M ∈ Kn×m) either
1. the permutation of two columns i and j:

M = (A1, . . . ,Ai−1,Ai,Ai+1, . . . ,Aj−1,Aj ,Aj+1, . . . ,Am)

and

M′ = (A1, . . . ,Ai−1,Aj ,Ai+1, . . . ,Aj−1,Ai,Aj+1, . . . ,Am),

2. the transformation of two columns Ai and Aj (i 6= j) involving four scalar
coefficients c1, c2, c3, c4 ∈ D satisfying c1c4 − c2c3 = 1:

M = (A1, . . . ,Ai−1,Ai,Ai+1, . . . ,Aj−1,Aj ,Aj+1, . . . ,Am)

and

M′ = (A1, . . . ,Ai−1, c1Ai + c2Aj ,Ai+1, . . . ,Aj−1,

c3Ai + c4Aj ,Aj+1, . . . ,Am),

3. the multiplication of a unit ε in the ring D to column Ai:

M = (A1, . . . ,Ai−1,Ai,Ai+1, . . . ,Am)

and

M′ = (A1, . . . ,Ai−1, εAi,Ai+1, . . . ,Am),

4. the insertion of a zero column1 before position i ∈ Nm or as the last column:

M = (A1, . . . ,Ai−1,Ai, . . . ,Am)

and

M′ = (A1, . . . ,Ai−1,

 0
...
0

 ,Ai, . . . ,Am),

or
5. the deletion of a zero column at position i ∈ Nm+1:

M = (A1, . . . ,Ai−1,

 0
...
0

 ,Ai+1, . . . ,Am+1)

and

M′ = (A1, . . . ,Ai−1,Ai+1, . . . ,Am)

with the convention that at least one column must remain.

1. shorthand for a column with only zero entries
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Remark:
For Euclidean rings the second transformation can be replaced by the simpler
transformation:

the addition of the q–fold of a column Ai to a column Aj for q ∈ D, i 6= j,
where

M = (A1, . . . ,Ai−1,Ai,Ai+1, . . . ,Aj−1,Aj ,Aj+1, . . . ,Am)

and

M′ = (A1, . . . ,Ai−1,Ai,Ai+1, . . . ,Aj−1,Aj + qAi,Aj+1, . . . ,Am).

The Euclidean algorithm guarantees that this transformation can express the
more general second transformation of definition 3.1.2. But this is not possible
in case of non–Euclidean rings. The proof of theorem 4.5.6 requires the more
expressive transformation, and it seems very likely that a proof of this theorem
would not be possible without it.

Definition 3.1.3:
Two matrices over K are matrix multiplication equivalent, M1 ≈mat M2, iff there
exist matrices T and U over D such that M2 = M1T and M1 = M2U.

Remarks:
(1) This definition includes matrices of different sizes. Obviously T and U have to

have the correct dimensions for the equalities to be true.

(2) Another notion of the matrix multiplication definition requires the unimodu-
larity of T and does not require a matrix U. But this notion excludes matrices
of different sizes therefore this definition would not be as general.

(3) The definitions here are formulated as column equivalence. The analogue row
equivalence can be defined either directly (with a few modifications of the
column equivalence definitions) or based on the column equivalence definitions:
Two matrices are module resp. transformation resp. matrix multiplication row
equivalent iff their transposed matrices are module resp. transformation resp.
matrix multiplication column equivalent.

(4) There is another notion of matrix equivalence. Again three different notions
of equivalence can be defined. The module equivalence requires only that the
represented modules are isomorphic but not equal. The transformation equiv-
alence allows column and row transformations. The matrix multiplication de-
mands the equalities: M2 = T1M1T2 and M1 = U1M2U2. The equivalence of
those three equivalence relations for Euclidean domains leads to the Smith
normal form. It is not important for this thesis, so the details will not be given
here.

3.2 Equivalence of the definitions
3.2.1 ≈trafo =⇒ ≈mod

Lemma 3.2.1:
If two matrices over K are transformation equivalent, then they are module equivalent.
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Proof. We have to show that an application of a transformation of any type does
not change the generated module. This is trivial for the transformation of types
4 and 5 because the zero module is the neutral element of the operation “+” in
the module of D–modules. It is trivial for transformation of type 1 because “+” is
commutative. It is trivial for transformation of type 3 because, for any D–unit ε
and any D–module M , we have εM = M .

For transformations of type 2 (with the notation of definition 3.1.2), with the coef-
ficients c1, c2, c3, c4 ∈ D and with Ai,Aj ∈ Kn for i, j ∈ Nm we have

D(c1Ai + c2Aj) ⊂ Dc1Ai +Dc2Aj ⊂ DAi +DAj

and

D(c3Ai + c4Aj) ⊂ Dc3Ai +Dc4Aj ⊂ DAi +DAj .

On the other hand, let Bi = c1Ai+c2Aj and Bj = c3Ai+c4Aj . Since c1c4−c2c3 = 1,
we have Ai = c4Bi − c2Bj and Aj = c1Bj − c3Bi. We conclude

DAi = D(c4Bi − c2Bj) ⊂ Dc4Bi +Dc2Bj ⊂ DBi +DBj

and

DAj = D(c1Bj − c3Bi) ⊂ Dc1Bj +Dc3Bi ⊂ DBi +DBj .

Therefore

DBi +DBj = DAi +DAj ,

which completes the proof.

3.2.2 ≈trafo =⇒ ≈mat

Lemma 3.2.2:
If two matrices over K are transformation equivalent then they are matrix multiplication
equivalent.

Proof. Let M ∈ Kn×m. We relate every transformation type to an elementary
matrix with the intention that the effect of the multiplication with the related
matrix is identical to the transformation itself:
• The permutation of two columns i and j relates to an identity matrix of

degree m except the diagonal elements on positions (i, i) and (j, j), which
are zero, and the elements on positions (i, j) and (j, i), which are one:



i j

1 0
. . .

i 0 1
. . .

j 1 0
. . .

0 1


.

It is easy to see that multiplication with this matrix permutates Ai and Aj .
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• The scaled transformation of two columns relates to the identity matrix of
degree m except for the four positions (i, i), (i, j), (j, i), (j, j), containing the
scalar factors c1, c2, c3, c4:



i j

1 0
. . .

i c1 c2
. . .

j c3 c4
. . .

0 1


.

Again it is easy to see that multiplication accomplishes the mentioned trans-
formation.

• The multiplication of the i-th column with the unit ε relates to the identity
matrix of degree m except that the i-th diagonal element is ε:



i

1 0
. . .

i ε
. . .

0 1

.

The multiplication with this matrix multiplies the i-th column with ε.
• The insertion of a zero column at position i relates to an identity matrix

with an inserted zero column at position i. It is a matrix in Dm×m+1:



i− 1 i i+ 1

1 0
. . .

i− 1 1 0 0
i 0 0 1

. . .
0 1


.

• The deletion of a zero column i relates to an identity matrix where the i-th
column is removed. It is a matrix in Dm×m−1:



i− 1 i

1 0
. . .

i− 1 1 0
i 0 0
i+ 1 0 1

. . .
0 1


.
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Because of the associativity of matrix multiplication, for any number of elementary
matrices Ti we have

(. . . (M1T1) · · · · · Tz) = M1(T1 · · · · · Tz).

It is easy to see that for any of the above transformation matrices there is another
one which reverts its effect. The product of those inverse transformation matrices
results in U.
Note that the elementary matrix relating to the “delete zero column” transformation
may not be applied in a general situation (like the other transformation matrices)
but only if there is a zero column at the correct position. In this proof, however, we
start with a valid transformation and this relates to a valid elementary matrix.

3.2.3 ≈mat ⇐⇒ ≈mod

Lemma 3.2.3:
Two matrices over K are matrix equivalent if and only if they are module equivalent.

Proof. ≈mat =⇒ ≈mod
Let M1 = (A1, . . . ,Am1

) ∈ Kn×m1 and M2 = (B1, . . . ,Bm2
) ∈ Kn×m2 . By

assumption, for any i ∈ Nm2
there are tij ∈ D such that Bi =

∑m1

j=1 tijAj ,
hence Bi ∈ DA1 + . . .DAm1 and

DB1 + · · ·+DBm2 ⊂ DA1 + · · ·+DAm1 .

The same conclusion can be drawn for Ai ∈ DB1 + . . .DBm2 . Hence,

DB1 + · · ·+DBm2 = DA1 + · · ·+DAm1 .

≈mod =⇒ ≈mat
Let M1 = (A1, . . . ,Am1) and M2 = (B1, . . . ,Bm2). By assumption,

DA1 + · · ·+DAm1 = DB1 + · · ·+DBm2 .

Therefore for any i ∈ Nm2 ,

Bi ∈ DA1 + · · ·+DAm1 ;

hence, for any j ∈ Nm1 , i ∈ Nm2 there exist tij ∈ D such that

Bi =

m1∑
j=1

tijAj , where i ∈ Nm2

and M2 = M1T with T = (tij)i∈Nm2
,j∈Nm1

. On the other hand, we have for
any i ∈ Nm1

:

Ai ∈ DB1 + · · ·+DBm2
;

hence, there exist uij ∈ D for any i ∈ Nm1
, j ∈ Nm2

such that

Ai =

m2∑
j=1

uijBj , where i ∈ Nm1 .

With U = (uij)i∈Nm1
,j∈Nm2

, we have M1 = M2U.



3.2. EQUIVALENCE OF THE DEFINITIONS 43

3.2.4 ≈mat =⇒ ≈trafo

This is by far the most difficult part of the equivalence proof which in general fails
if the ring does not have special properties. An important aid for the equivalence
proof and many other things is the following definition.

Definition 3.2.4 (HERMITE normal form):
Let D be an integral domain and K its quotient field. Let a reduce function according to
definition 2.2.11 be fixed. Let S ⊂ K be a set of representatives for the classes of K×/D∗
where K× denotes the multiplicative group of K and D∗ the group of multiplicative
units of D.

A matrix M = (aij)i∈Nn,j∈Nm
∈ Kn×m is in HERMITE normal form iff there exists a

strictly increasing map ρ : Nm → Nn with the properties

• ∀i ∈ Nn, j ∈ Nm, i > ρ(j) =⇒ aij = 0 (diagonal form)
• ∀j, k ∈ Nm, k > ρ(j) =⇒ aρ(j)k is reduced (see definition 2.2.11) modulo the

ideal generated by aρ(j)j .
• ∀j ∈ Nm, the (diagonal) element aρ(j)j ∈ S.

This definition is a generalization of the well–known Hermite normal form of ma-
trices over principal ideal rings, as for instance is given in [PZ93, p. 179]. The
main prerequisite for the generalization is the introduction of reduce functions in
section 2.2.

We can prove that every module equivalence class contains at most one matrix in
Hermite normal form. (It is a special case of the proposition 4.4.4.)

The problem is to prove that every module equivalence class contains at least one
matrix in Hermite normal form. If it is possible to show that for every matrix there
exists a chain of elementary transformations which results in a matrix in Hermite
normal form, we would have shown two things:

• Every module equivalence class contains exactly one matrix in Hermite
normal form.

• Two matrices which are module equivalent are also transformation equiva-
lent.

An important approach is the Gauss–Jordan algorithm. Most importantly, this
algorithm only works with Euclidean rings. It can be modified to work for principal
ideal domains, using the following lemma.

Lemma 3.2.5:
In a principal ideal domain the gcd of two elements always exists.

Proof. Let D be a principal ideal domain and a, b ∈ D. Consider the ideal aD+ bD.
Every D–ideal is principal, therefore aD + bD has a principal generator c ∈ D.
aD ⊂ cD, hence a ∈ cD and c|a, likewise c|b. A d ∈ D dividing both a and d
generates an ideal dD ⊃ aD + bD = cD which implies d|c.

If there is an algorithm which finds the principal generator for any given ideal
then the proof of the lemma is constructive. There are Gauss–Jordan algorithm
versions which use the gcd instead of remainder division as in [KB79], [CC82],
or [Hop94]. In algebraic number rings, finding a principal generator of an ideal is
generally not an easy task; for good methods see [Hes96, pp. 75–77].
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[PZ93, p. 179] proves the existence of the Hermite normal form in principal ideal
domains with a different constructive method.

The results of the next chapter will provide still another proof of theorem 4.5.6,
which is based on the more general pseudomatrices. This proof is constructive and
uses methods for pseudomatrices.

3.2.5 Summary

The proven statements about the three matrix equivalence definitions are summa-
rized in the following picture:

≈mat

≈trafo

≈mod-
always

�
always

�
�
�

�
�
�	

only for
principal ideal

domains

�
�
�
�
�
��

always

@
@
@
@
@
@R

always

The question is still open if the equivalence of the matrix equivalence definitions
holds for more general rings. One hypothesis is that this is the case for Dedekind
domains but not for integral domains although there is neither proof nor disproof
so far.



Chapter 4

The theory of pseudomatrices

Let D be an integral domain (a commutative unital ring without nontrivial zero
divisors) andK its quotient field. Finitely generatedD–modules inKn (where n ∈ N)
can be represented by matrices over D with n rows. This was the subject of the
last chapter. The equivalence of the three equivalence relations for matrices and the
existence of the normal form can only be shown if D is a principal ideal domain.

This chapter generalizes the concept of D–matrices to D–pseudomatrices. The defi-
nitions of the three matrix equivalence relations for pseudomatrices and the normal
form are an analogue of those for matrices. The advantage of the generalization is
that equivalence of the three equivalence relations and the existence of the normal
form can not only be shown for principal ideal domains, but for the more general
Dedekind rings. Although the complete theoretical solution can only be obtained
for Dedekind rings, definitions and propositions in the more general context of
integral domains will be given, where possible.

The idea of pseudomatrices can be found in [O’M63, §81:3]. This theorem proves
the existence of a finite sum of products of an ideal and an module as a replacement
for integral bases which do not exist in general in the case of Dedekind rings. This
sum was named pseudobasis in [Coh96] by Henri Cohen. Matrices represent bases
of finitely generated modules — analogously pseudomatrices represent pseudobases.

4.1 The definition of pseudomatrices

Definition 4.1.1:
Let D be an integral domain and K = Q(D) its quotient field. Let n,m ∈ N and

A = (A1, . . . ,Am) =

 a11 . . . a1m

...
...

an1 . . . anm


be an (n×m)–matrix over K with column vectors A1, . . . ,Am in Kn.

45
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Let a1, . . . , am be m fractional D–ideals1. Then the scheme formed by

M =

[
a1 . . . am

A

]
=

[
a1 . . . am
A1 . . . Am

]
=




a1 . . . am

a11 . . . a1m
...

...
an1 . . . anm




is called a pseudomatrix over D with n rows and m columns.

a1, . . . , am are called the coefficient ideals of M.

The notion of pseudomatrices was introduced in [Coh96, Th. 2.5]. Analogous to the
definition of the operator Mod for matrices in definition 3.1.1 we define

Definition 4.1.2:
Let D be an integral domain and let

M =

[
a1 . . . am
A1 . . . Am

]
be a pseudomatrix over D with n rows. Then the D–module

Mod (M) =

m∑
i=1

aiAi ⊂ Kn

is called the module generated by the pseudomatrix M.

For every finitely generated D–module in Kn there exists a pseudomatrix which
represents it. Let A1, . . . ,Am be the m generators of the module M . Then

Mod

([
1D . . . 1D
A1 . . . Am

])
= M.

(1D is an abbreviation for the D–ideal generated by 1.)

Definition 4.1.3:
Two pseudomatrices M and N over an integral domain D are calledmodule equivalent
(written M ≈mod N) iff Mod (M) = Mod (N).

It is easy to see that this an equivalence relation. A very important aim is to define
and to construct canonical representatives of the equivalence classes of the relation
≈mod.

The set of matrices over K can be considered a subset of the set of pseudomatrices

over D via the identification map A 7→
[

1D . . . 1D
A

]
, where A is a matrix

over K. This makes sense because the modules which are represented by A and
M are equal: Mod (A) = Mod (M). Therefore the concept of the representation
of D–modules in Kn by pseudomatrices is a generalization of the concept of the
representation by matrices.

1. The zero ideal is not a fractional D–ideal by convention of definition 1.0.1 .
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Definition 4.1.4:

A pseudomatrix




a1 . . . am

a11 . . . a1m
...

...
an1 . . . anm


 is called integral if for every i ∈ Nn and j ∈

Nm the ideal aijaj is an integral ideal.

Lemma 4.1.5:
A pseudomatrix M is integral iff Mod (M) ⊂ Dn.

4.2 Transformations on pseudomatrices

Transformations on pseudomatrices are defined in analogy to transformations on
matrices. Most importantly, an application of a transformation should not change
the module generated by the pseudomatrix. This is proved in the subsequent propo-
sition 4.2.3.

Definition 4.2.1:
Let M and N be two pseudomatrices of the same number n of rows. They are called
transformation equivalent (written M ≈trafo N) iff N can be produced from M by
a finite number of applications of elementary transformations which are:

SWAP:
Swaps the columns i and j of M:[

. . . ai . . . aj . . .

. . . Ai . . . Aj . . .

]
→
[
. . . aj . . . ai . . .
. . . Aj . . . Ai . . .

]
.

PUSH FACTOR:
This transformation involves only one column and its ideal. The nonzero factor
e ∈ K is pushed from the ideal ai (ai is divided by e) to the column Ai (Ai is
multiplied by e):[

. . . ai . . .

. . . Ai . . .

]
→
[
. . . ai

e . . .
. . . eAi . . .

]
.

TWO SCALED:
This transformation changes two columns without modifying the coefficient ide-
als: [

. . . ai . . . aj . . .

. . . Ai . . . Aj . . .

]
→
[
. . . ai . . . aj . . .
. . . Bi . . . Bj . . .

]
,

where Bi,Bj ∈ Kn and c1, c2, c3, c4 ∈ K satisfy

c1, c4 ∈ D, c2ai ⊂ aj , c3aj ⊂ ai,

∣∣∣∣c1 c2c3 c4

∣∣∣∣ = 1,

Bi = c1Ai + c2Aj , Bj = c3Ai + c4Aj .
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COLLECT:
This transformation collects the ideals of two columns of M:[

. . . ai . . . aj . . .

. . . Ai . . . Aj . . .

]
→
[
. . . 1D . . . aiaj . . .
. . . Bi . . . Bj . . .

]
,

where Bi,Bj ∈ Kn and c1, c2, c3, c4 ∈ K satisfy

c1 ∈ ai, c2 ∈ aj , c3aj ⊂ D, c4ai ⊂ D,∣∣∣∣c1 c2c3 c4

∣∣∣∣ = 1, Bi = c1Ai + c2Aj , Bj = c3Ai + c4Aj .

SPREAD:
This is the inverse transformation of the COLLECT transformation. It may only
be applied if the coefficient ideal of the i-th column is D:[

. . . 1D . . . aj . . .

. . . Ai . . . Aj . . .

]
→
[
. . . bi . . . bj . . .
. . . Bi . . . Bj . . .

]
,

where bi and bj are fractional D–ideals, Bi,Bj ∈ Kn, and c1, c2, c3, c4 ∈ K
satisfy

bibj = aj , c1bi ⊂ D, c2 ∈ bj , c3bj ⊂ D, c4 ∈ bi,∣∣∣∣c1 c2c3 c4

∣∣∣∣ = 1, Bi = c1Ai + c2Aj , Bj = c3Ai + c4Aj .

INSERT ZERO COLUMN:
This transformation appends a zero column together with an arbitrary fractional
ideal to M:

[
a1 . . . am
A1 . . . Am

]
→


a1 . . . am a

A1 . . . Am

 0
...
0




where a is an arbitrary fractional D–ideal.
DELETE ZERO COLUMN:

This transformation deletes the last column of M, if it is a zero column, together
with its (arbitrary) coefficient ideal:

a1 . . . am a

A1 . . . Am

 0
...
0


→

[
a1 . . . am
A1 . . . Am

]

for any fractional D–ideal a. This transformation must not be applied if M has
only one column.

The actual definition of pseudomatrices forbids pseudomatrices with no columns
which is just one possible convention. To deal with pseudomatrices whose matrix
contains only zero entries (as counterpart of the zero module which is represented by
it) must be artificial at some point — either in this definition of transformations or
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in all statements about pseudomatrices, where the pseudomatrix with no columns
at all would have be dealt with as a special case.

Other forms of the definition of elementary transformations would have been pos-
sible. Here, the transformations are chosen for their simplicity, while still being
expressive and reasonable, even for non–Dedekind rings.

Lemma 4.2.2:
Let D be an integral domain. For every transformation of pseudomatrices over D, there
exists an inverse transformation.

Proof. Obviously Insert zero column and Delete zero column are inverse to
each other. The Swap transformation is inverse to itself.

Let the Two scaled transformation be described as[
. . . ai . . . aj . . .
. . . Ai . . . Aj . . .

]
→
[
. . . ai . . . aj . . .
. . . Bi . . . Bj . . .

]
,

where Bi,Bj ∈ Kn and c1, c2, c3, c4 ∈ K satisfy

c1, c4 ∈ D, c2ai ⊂ aj , c3aj ⊂ ai,

∣∣∣∣c1 c2c3 c4

∣∣∣∣ = 1,

Bi = c1Ai + c2Aj , Bj = c3Ai + c4Aj .

The inverse transformation is a Two scaled transformation which is described as[
. . . ai . . . aj . . .
. . . Bi . . . Bj . . .

]
→
[
. . . ai . . . aj . . .
. . . Ai . . . Aj . . .

]
,

where

d1 = c4, d2 = −c2,
d3 = −c3, d4 = c1,

(
d1 d2

d3 d4

)
=

(
c1 c2
c3 c4

)−1

,
Ai = d1Bi + d2Bj ,

Aj = d3Bi + d4Bj .

We can conclude

c4 ∈ D =⇒ d1 ∈ D,
c2ai ⊂ aj =⇒ d2ai ⊂ aj ,

c3aj ⊂ ai =⇒ d3aj ⊂ ai,

c1 ∈ D =⇒ d4 ∈ D.

The Collect transformation with the parameters c1, c2, c3, c4 is inverse to the
Spread transformation with the parameters c4,−c2,−c3, c1. These parameters can
be shown to satisfy the properties required by the Spread transformation analo-
gously to the Two scaled transformation.

The Spread transformation is inverse to a Collect transformation in a similar
way.

Proposition 4.2.3:
Let M and N be two pseudomatrices over an integral domain D with the same number
of rows. If they are transformation equivalent, then they are module equivalent:

M ≈trafo N =⇒ M ≈mod N.
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Proof. We have to show that the transformations Swap, Push factor, Two
scaled, Collect, Spread, Insert zero column, and Delete zero column
of definition 4.2.1 do not change the represented module of a pseudomatrix M with
n rows.

It is trivial for the Swap and Push factor transformations.

Let A be the zero vector of length n, a any fractional D–ideal. Then aA is the zero
module. Therefore the Insert zero column and Delete zero column do not
change the represented module.

Let a Two scaled transformation be described by[
. . . ai . . . aj . . .
. . . Ai . . . Aj . . .

]
→
[
. . . ai . . . aj . . .
. . . Bi . . . Bj . . .

]
,

where Bi,Bj ∈ Kn and c1, c2, c3, c4 ∈ K satisfy

c1, c4 ∈ D, c2ai ⊂ aj , c3aj ⊂ ai,

∣∣∣∣c1 c2c3 c4

∣∣∣∣ = 1,

Bi = c1Ai + c2Aj , Bj = c3Ai + c4Aj .

We have to show that

aiAi + ajAj = aiBi + ajBj .

By lemma 4.2.2 it suffices to show that

aiBi + ajBj ⊂ aiAi + ajAj .

We can show

aiBi = ai(c1Ai + c2Aj) ⊂ aic1Ai + aic2Aj ⊂ aiAi + ajAj

and similarly ajBj ⊂ aiAi + ajAj .

Let a Collect transformation be described by[
. . . ai . . . aj . . .
. . . Ai . . . Aj . . .

]
→
[
. . . 1D . . . aiaj . . .
. . . Bi . . . Bj . . .

]
,

where Bi,Bj ∈ Kn and c1, c2, c3, c4 ∈ K satisfy

c1 ∈ ai, c2 ∈ aj , c3aj ⊂ D, c4ai ⊂ D,∣∣∣∣c1 c2c3 c4

∣∣∣∣ = 1, Bi = c1Ai + c2Aj , Bj = c3Ai + c4Aj .

We have to show that

aiAi + ajAj = DBi + aiajBj .

By lemma 4.2.2 it suffices to show that

DBi + aiajBj ⊂ aiAi + ajAj .
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We have

c1 ∈ ai =⇒ c1Ai ∈ aiAi

c2 ∈ aj =⇒ c2Aj ∈ ajAj

=⇒ DBi = D(c1Ai + c2Aj) ⊂ aiAi + ajAj

and

c3aj ∈ D =⇒ c3aiajAi ∈ aiAi

c4ai ∈ D =⇒ c4aiajAj ∈ ajAj

=⇒ aiajBi = aiaj(c3Ai + c4Aj) ⊂ aiAi + ajAj .

which proves the claim for the Collect transformation.

Likewise, it can be proved that the Spread transformation does not change the
represented module.

4.2.1 Existence of parameters for the transformations

Let D be a Dedekind ring. We ask the question whether there exist parameters
for every elementary transformation type of definition 4.2.1 such that the transfor-
mation may be applied.

Obviously, Insert zero column can always be applied andDelete zero column
only if the last column is indeed zero. It is easy to see that parameters are quite
arbitrary for the transformations Push factor, Swap, Two Scaled.

The Spread transformation cannot always be applied because one of the coefficient
ideals of M must be D. From the proposition 4.2.4 below and the existence of the
inverse transformation in lemma 4.2.2 it follows that if one coefficient ideal of M
is indeed 1D, parameters can be found to apply the Spread transformation. This
leaves us with the task of showing the following proposition:

Proposition 4.2.4:
Let D be a DEDEKIND ring. For every two fractional D–ideals ai and aj , it is possible to
find c1 ∈ ai, c2 ∈ aj , c3 ∈ a−1

j , and c4 ∈ a−1
i such that∣∣∣∣c1 c2c3 c4

∣∣∣∣ = 1.

These coefficients satisfy the requirements of a COLLECT transformation of defini-
tion 4.2.1.

If D is a maximal order of a number field, algorithm 1.8.5 gives a constructive proof.

If D is not an algebraic number ring, proposition 1.8.4 proves the existence.

4.2.2 Special transformations

There are other important transformations besides the elementary transformations.



52 CHAPTER 4. THE THEORY OF PSEUDOMATRICES

General Two Columns:
This transformation changes two columns

[
ai
Ai

]
and

[
aj
Aj

]
of M while the

rest of the matrix stays constant:[
. . . ai . . . aj . . .
. . . Ai . . . Aj . . .

]
→
[
. . . bi . . . bj . . .
. . . Bi . . . Bj . . .

]
,

where ai and aj must be invertible and where bi and bj are fractional D–
ideals, Bi,Bj ∈ Kn, and c1, c2, c3, c4 ∈ K satisfy

c1bi ⊂ ai, c2bi ⊂ aj , c3bj ⊂ ai, c4bj ⊂ aj ,

e :=

∣∣∣∣c1 c2c3 c4

∣∣∣∣ = c1c4 − c2c3 6= 0, aiaj = ebibj ,

Bi = c1Ai + c2Aj , Bj = c3Ai + c4Aj .

Unimodular:
Special case of General two columns where e = 1. It is otherwise iden-
tical.

The Swap, Push factor, Collect, Spread, Unimodular, and Two scaled
transformations are all special cases of the General two columns transforma-
tion.

The effect of a General two columns transformation can also be obtained by
an application of a Unimodular and a Push factor transformation.

The question is if the General two columns transformation can be based on
the elementary transformations. It can be answered positively for Dedekind rings:

Proposition 4.2.5:
Let D be a DEDEKIND ring. Any one application of the UNIMODULAR transformation
can be reduced to one COLLECT, one SPREAD, and one TWO SCALED transformation
application in this order.

Proof. Since D is a Dedekind ring every ideal is invertible. Let the Unimodular
transformation be described by(

Bi

Bj

)
=

(
c1 c2
c3 c4

)(
Ai

Aj

)
,

∣∣∣∣c1 c2c3 c4

∣∣∣∣ = 1, aiaj = bibj ,

c1 ∈ aib
−1
i , c2 ∈ ajb

−1
i , c3 ∈ aib

−1
j , c4 ∈ ajb

−1
j .

From proposition 4.2.4, it is clear that there are d1, d2, d3, and d4 such that∣∣∣∣d1 d2

d3 d4

∣∣∣∣ = 1, d1 ∈ ai, d2 ∈ aj , d3 ∈ a−1
j , d4 ∈ a−1

i .

This transforms[
. . . ai . . . aj . . .
. . . Ai . . . Aj . . .

]
=⇒

[
. . . D . . . aiaj . . .
. . . Ci . . . Cj . . .

]
,

where
(
Ci

Cj

)
=

(
d1 d2

d3 d4

)(
Ai

Aj

)
.
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As an easy deduction of proposition 4.2.4 (because unimodular matrices can be
inverted), it is clear that there exists a Spread transformation with∣∣∣∣e1 e2

e3 e4

∣∣∣∣ = 1, e1 ∈ b−1
i , e2 ∈ bj , e3 ∈ a−1

j , e4 ∈ ai

which transforms[
. . . D . . . aiaj . . .
. . . Ci . . . Cj . . .

]
=⇒

[
. . . bi . . . bj . . .
. . . Di . . . Dj . . .

]
,

where
(
Di

Dj

)
=

(
e1 e2

e3 e4

)(
Ci

Cj

)
.

These two transformations applied together form a transformation[
. . . ai . . . aj . . .
. . . Ai . . . Aj . . .

]
=⇒

[
. . . bi . . . bj . . .
. . . Di . . . Dj . . .

]
,

where
(
Di

Dj

)
=

(
f1 f2

f3 f4

)(
Ai

Aj

)
and

(
f1 f2

f3 f4

)
=

(
e1 e2

e3 e4

)(
d1 d2

d3 d4

)
.

For this transformation we can check∣∣∣∣f1 f2

f3 f4

∣∣∣∣ = 1, aiaj = bibj ,

f1 ∈ aib
−1
i , f2 ∈ ajb

−1
i , f3 ∈ aib

−1
j , f4 ∈ ajb

−1
j .

The coefficients(
g1 g2

g3 g4

)
=

(
c1 c2
c3 c4

)(
f4 −f2

−f3 f1

)
satisfy the requirements for the Matrix Two Scaled transformation since

g1 = c1f4 − c2f3 ∈ ajb
−1
i aib

−1
j = 1D

g2 = −c1f2 + c2f1 ∈ aiajb
−2
i = b−1

i bj

g3 = c3f4 − c4f3 ∈ aiajb
−2
j = b−1

j bi

g4 = −c3f2 − c4f1 ∈ ajb
−1
i aib

−1
j = 1D.

Another transformation is the following:
Add q-times:

This transformation adds the q–fold of Ai to Aj :[
. . . ai . . . aj . . .
. . . Ai . . . Aj . . .

]
→
[
. . . ai . . . aj . . .
. . . Ai . . . Aj + qAi . . .

]
,

where q ∈ K satisfies qaj ⊂ ai.
This transformation is a special case of the Two scaled transformation. The ques-
tion is whether the Two scaled transformation can be seen as a series of other
transformations. If D were a Euclidean ring, it would be possible to determine a
number of Add q–times transformations in a process similar to the Euclidean
algorithm which is equivalent to a Two scaled transformation. Since we are in-
terested in non–Euclidean rings, the Two scaled transformation is used as an
elementary transformation and the Add q–times transformation is no longer im-
portant.
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4.2.3 Special problems for non–DEDEKIND rings

In the General two columns transformation in subsection 4.2.2 the ideals ai
and aj requested to be invertible? The answer is that the transformation should at
least qualify the statements of lemma 4.2.2 and proposition 4.2.3, i.e. an applica-
tion of it should be reversible and should not change the module generated by the
pseudomatrix.

We assume the inverse transformation to be a General two columns transfor-
mation:[

. . . bi . . . bj . . .

. . . Bi . . . Bj . . .

]
→
[
. . . ai . . . aj . . .
. . . Ai . . . Aj . . .

]
,

where

d1 :=
c4
e
, d2 := −c2

e
, d3 := −c3

e
, d4 :=

c1
e

Ai = d1Bi + d2Bj , Aj = d3Bi + d4Bj .

We have

d1d4 − d2d3 =
1

e
6= 0, and aiaj

1

e
= bibj .

From c4bj ⊂ aj (hence c4aibj ⊂ aiaj) and ebibj = aiaj , we conclude c4aibj ⊂ ebibj .
But unless the ideal bj is invertible, we cannot conclude d4ai ⊂ bi, which we would
need for a valid General two columns transformation.

We only need the following simple property:

Lemma 4.2.6:
Let D be an integral domain and a1 and a2 two fractional ideals. Then a := a1a2 is
invertible iff a1 and a2 are invertible.

Proof. If a1 and a2 are invertible, then a′ := a−1
2 a−1

1 is the inverse of a.

Let a−1 be the inverse of a. Then a′ := a−1a2 is the inverse of a1 since

a′a1 = a−1a2a1 = 1D,

and likewise a2 is invertible.

Since we require the ideals ai and aj to be invertible, we have proved that the
General two columns transformation is reversible and does not change the
generated module.

4.3 Matrix multiplication equivalence definition

There is another important equivalence relation for pseudomatrices.
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Definition 4.3.1:
Let D be an integral domain, let

M =

[
a1 . . . am

A

]
and N =

[
b1 . . . bl

B

]
be two pseudomatrices with n rows. Then M and N are matrix multiplication equiv-
alent, M ≈mat N, iff there exists a matrix T = (tij)i,j ∈ Km×l such that B = AT and
for every i ∈ Nm, j ∈ Nl we have tijbj ⊂ ai, and there exists a matrix U = (uij)i,j ∈
Kl×m such that A = BU and for every i ∈ Nl, j ∈ Nm we have uijaj ⊂ bi.

Proposition 4.3.2:
Two pseudomatrices are module equivalent iff they are matrix equivalent.

Proof. =⇒
Assume[

a1 . . . am
A1 . . . Am

]
≈mod

[
b1 . . . bl
B1 . . . Bl

]
.

For every j ∈ Nl we have bjBj ⊂
∑m
i=1 aiAi. Hence there exist tij ∈ K such that

tijbj ⊂ ai and Bj =
∑m
i=1 tijAi. The matrix T =

(
tij
)
i∈Nm,j∈Nl

satisfies B = AT .
On the other hand there exist uij ∈ K such that uijaj ⊂ bi and for every j ∈ Nm we
have Aj =

∑l
i=1 uijBi. With U =

(
uij
)
i∈Nl,j∈Nm

we have A = BU which completes
one direction of the proof.

⇐=
Let the two pseudomatrices be matrix multiplication equivalent. Then we have
T = (tij)i∈Nj ∈ Km×l such that B = AT and for every i ∈ Nm, j ∈ Nl we have
tijbj ⊂ ai. It follows that

bjBj =

m∑
i=1

tijbjAi ∈
m∑
i=1

aiAi and
l∑

j=1

bjBj ⊂
m∑
i=1

aiAi.

We have U = (uij)i∈Nl,j∈Nm
∈ Kl×m such that A = BU, and for every i ∈ Nl, j ∈

Nm we have uijaj ⊂ bi. It follows that

ajAj =

l∑
i=1

uijajBi ∈
l∑
i=1

biBi and
m∑
j=1

ajAj ⊂
l∑
i=1

biBi,

which completes the proof.

4.4 Normal forms of pseudomatrices
We want to have a description of finitely generated modules by pseudomatrices.
Since different pseudomatrices may represent the same module, we are interested
in how to decide if two pseudomatrices are module equivalent. Transformations of
pseudomatrices approach the algorithmic solution to this question.
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In the last section, several questions were left open. If two pseudomatrices are mod-
ule (or equivalently matrix multiplication) equivalent, are they also transformation
equivalent? In other words, for any two pseudomatrices which represent the same
finitely generated module, does there always exist a course of transformations which
transforms one to the other? This question becomes easier if we fix one pseudomatrix
in each class of pseudomatrices (regarding the module equivalence) — the normal
form.

Once defined, the normal form must satisfy the following properties to be useful at
all:

• Uniqueness: If two module equivalent pseudomatrices are in the normal form,
then they are equal.

• Existence: For any given pseudomatrix, there exists a pseudomatrix in the
normal form which is module equivalent to the given pseudomatrix.

• Constructability: For any given pseudomatrix, there exists a course of trans-
formations which transforms it to a pseudomatrix in normal form.

If these properties hold, it follows immediately that two module equivalent pseudo-
matrices are also transformation equivalent.

4.4.1 The definition of the COHEN–HERMITE normal form

The following definition is based on the paper [Coh96]. Henri Cohen calls it Her-
mite normal form there because it can be seen as a generalization of the Hermite
normal form. However it includes conventions which are not the only ones possible.
[BP91] use a different convention (although this is not explicitly stated there, it is
a consequence of the given algorithm).

Definition 4.4.1:
A pseudomatrix over a DEDEKIND ring D

M =




a1 . . . am

a11 . . . a1m
...

...
an1 . . . anm




is in COHEN–HERMITE normal form (CHNF) regarding a fixed reduce function (as in
definition 2.2.11) if there exists a strictly increasing map ρ : Nm → Nn (therefore
n ≥ m ≥ 1) with the properties:

1. ∀i ∈ Nn, j ∈ Nm, i > ρ(j) =⇒ aij = 0 (triangular form);
2. ∀i ∈ Nm, aρ(i)i = 1 (ones on the diagonal); and
3. ∀i, j ∈ Nm, j > i =⇒ aρ(i)j is reduced modulo the ideal ai

aj
.

By abuse of language we will say “triangular form” if we want to point to the
property alk = 0 for k ∈ Nm and l ∈ Nn \Nk. We will call the entries aρ(k)k = 1 for
k ∈ Nm “diagonal entries”.
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The first two properties describe the form of the CHNF pseudomatrix as



a1 . . . am−1 am

a11 a1,m−1 a1m

...
...

...
aρ(1)−1,1

1
. . .

...
...

1 aρ(m−1),m

...
...

0 aρ(m)−1,m

1
...

0 0





. (4.4.1)

The last property implies that a reduce function according to definition 2.2.11 must
be fixed to define the CHNF. For different reduce functions, different pseudomatrices
are in CHNF. From now on let a reduce function be fixed.

To prove the uniqueness of the CHNF, we need the following lemmas:

Lemma 4.4.2:
A pseudomatrix M =

[
a1 . . . am
A1 . . . Am

]
in CHNF is a pseudobasis for Mod (M). This

means that there is no pseudomatrix N with fewer columns than M and Mod (N) =
Mod (M).

Proof. This is immediate because of the triangular form of the CHNF, which implies
that for no i ∈ Nm we have Ai ∈

∑
j∈Nm\{i} ajAj .

Lemma 4.4.3:
Let the i-th row ideal of the pseudomatrix


a1 . . . am

a11 . . . a1m
...

...
an1 . . . anm




be the ideal
∑m
j=1 aijaj . Let

pri : Kn � Ka1

...
an

 7→ ai

be the epimorphism to the i-th component of a vector.

Then the i-th row ideal of a pseudomatrix M is equal to the ideal pri(Mod (M)).
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Proof. Let c ∈ pri(Mod (M)). Then there exists an A ∈ Mod (M) with c = pri(A).
A can be represented with aj ∈ aj for j ∈ Nn as A =

∑n
j=1 ajAj . We conclude

c =

n∑
j=1

ajaij ∈
m∑
j=1

aijaj .

Let c ∈
∑m
j=1 aijaj . Then there exist aj ∈ aj for j ∈ Nn such that c =

∑n
j=1 ajaij .

Therefore

c =

n∑
j=1

ajpri(Aj) = pri(
n∑
j=1

ajAj) ∈ pri(Mod (M)).

Proposition 4.4.4 (Uniqueness of the CHNF):
If two module equivalent pseudomatrices are in CHNF they are equal.

Proof. Let M and N be two module equivalent pseudomatrices in CHNF.

By definition 4.1.3, M and N must have the same number of rows to be module
equivalent. From lemma 4.4.2 it follows that they have to have the same number of
columns. By lemma 4.4.3, for every row i, the i-th row ideal of M and N must be
equal.

We use induction on the number m of columns of the pseudomatrix M.

Induction start. Let m=1 and

M =





a1

a11
...

aρ(1)−1,1

1
0
...
0




,N =




b1

b11
...
bn1


 .

Since all row ideals of M and N are equal, it follows that for ρ(1) + 1 ≤ i ≤ n we
have bi1 = 0 and bρ(1)1 6= 0. N is in CHNF, hence bρ(1)1 = 1 and a1 = b1. Again by
the equality of the row ideals, we conclude for i ∈ Nρ(1) that ai1 = bi1εi, where the
εi are units of D. As M and N are module equivalent, all εi are equal in pairs. But
aρ(1)1 = bρ(1)1 = 1, therefore ερ(1) = 1. We conclude that ai1 = bi1 for all i ∈ Nn,
which finishes the induction start.

Induction step. Let the notations of M be as in (4.4.1) and the notations of N
likewise with bij in place of aij and bij in place of aij .

Let M′ resp. N′ be the pseudomatrices M resp. N after removing their last columns.
By the definition of the CHNF, it is clear that M′ and N′ are also in CHNF.

The rows ρ(m−1)+1, . . . , n of the pseudomatrix M′ contain only zero entries. The
last column of M contains nonzero elements at most at positions ρ(m−1)+1, . . . , n,
of which at least the entry at position ρ(m) equals one.
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Therefore Mod (M′) contains all the elements of Mod (M) which have zero entries
at positions ρ(m− 1) + 1, . . . , n. The same is true for Mod (N′) and Mod (N). Since
Mod (M) = Mod (N), this gives

Mod (M′) = Mod (N′) .

By the induction assumption, we conclude that

M′ = N′. (4.4.2)

Since all row ideals of M and N are equal (lemma 4.4.3) and the diagonal entries of
a CHNF satisfy aρ(m)m = 1, bρ(m)m = 1 (as in the argumentation in the induction
start) we yield am = bm.

It is left to show akm = bkm for k ∈ Nn. By definition, for the entries at position
k > ρ(m) we simply have akm = bkm = 0. The diagonal entry satisfies aρ(m)m =
bρ(m)m = 1. For the following conclusions, let k iterate over the remaining entries.

Iteration of k from ρ(m)−1 to 1. Assume that ak+1,m = bk+1,m,. . . ,aρ(m)−1,m =
bρ(m)−1,m has already been shown and also assume akm 6= bkm. Let

C = Am − Bm =



c1 = a1m − b1m
...

ck = akm − bkm
0
...
0


(4.4.3)

be the difference vector of the last columns Am of M and Bm of N. We have the
formula

amC = am(Am − Bm) ⊂ amAm + amBm ⊂ Mod (M) . (4.4.4)

Consider two cases: the index k might or might not be in the image set ρ(Nm) of
M. In other words, I check if there exists a column index r such that akr = 1 or
not.
Case 1: k ∈ ρ(Nm)

Let r be the column number with ρ(r) = k. We know that the matrices of
both M and N have the entry one at position (k, r).
Let Ar be the r–th column of the matrix of M. Ar has a one at position
k and zeros at the positions with a higher index than k. C has the entry
ck = akm − bkm at position k and zeros at the positions with higher index
than k. Only the summand arAr of the sum Mod (M) =

∑m
i=1 aiAi could

give a contribution to the entry of C at position k. More precisely:

amck ⊂ ar. (4.4.5)

On the other hand, the definition of the CHNF requires both akm and bkm
to be reduced modulo the ideal ar

am
, which is the third property.

But by proposition 2.2.12 and formula (4.4.5), we obtain akm = bkm which
is a contradiction to the above assumption.
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Case 2: k 6∈ ρ(Nm)
Let l be the smallest index with k < l ≤ n and l = ρ(r). Again consider the
difference vector of formula (4.4.4). But how should any element of amC be
expressed as a linear combination Mod (M) =

∑
i=1maiAi? The columns

A1, . . . ,Ar−1 have zero at position k and can not contribute to a possible
ck 6= 0. The columns Ar, . . . ,Am are not zero at position k but they are also
nonzero at positions > k. The triangular form of the matrix of M guarantees
that any nonzero element of

∑
i=rmaiAi has at least one nonzero entry

among the positions ρ(r), . . . , ρ(m). It follows that this case can not occur
under the assumption ck 6= 0.

Both cases lead to a contradiction, therefore we have shown akm = bkm for any
k ∈ Nn. Together with equation (4.4.2) we obtain M = N, which finishes the
induction step.

Remark:
The question arises if there are other possible conventions for a normal form
of a pseudomatrix except the one given in Definition 4.4.1.

The triangular form is the crucial factor to guarantee uniqueness, existence,
and constructability. As argumented in many papers about the integer HNF,
it has no practical value to define a normal form of integer matrices which is
not a triangular form.

Consider the matrix equivalent to a given matrix where the sum of the vector
norms of the columns is minimal. The construction is very hard, assumably
a NP–complete problem. (The problem is related to the problem of finding a
unique Steinitz form, see section 4.6.)

For triangular forms, the normal form convention includes two separate points:
norming the diagonal entries and norming the non–diagonal entries.

In definition 4.4.1, the freedom to choose a reduce function implies the freedom
for any convention of the non–diagonal elements. For algebraic number fields,
at least 2 conventions are useful. One demands non–diagonal entries to have
a representation with the least possible positive coefficients. The other one
demands non–diagonal entries to have a representation with coefficients with
the least absolute value. See section 2.3.

According to definition 4.4.1, the diagonal entries are one but could be any
fractional algebraic number while the coefficient ideal of its column is divided
by the same algebraic number. From the theoretical point of view this one is the
natural choice, and it is satisfying from the algorithmic point of view since it
is very easy to transform a normal form with ones on the diagonal to a normal
form with any other convention.

Dr. Claus Fieker (in private conversation) pointed to the fact that, for certain
applications using the normal form as a basis of a number field lattice, other
conventions for the diagonal entries might be more useful. It is not be dealt
with here since it is more a property of the algorithms using the normal form
than a feature of the normal form itself.
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4.5 The existence of the normal form
4.5.1 The COHEN algorithm

Let D be a Dedekind ring. Then the following algorithm describes the construction
of a pseudomatrix in CHNF which is (transformation) equivalent to a given arbitrary
pseudomatrix.

From the theoretical point of view this algorithm serves two purposes:
• The explicit computation of the CHNF in maximal orders of algebraic num-

ber fields over Q . It is based on the explicit algorithms 1.8.8 in step 9 and
algorithm 2.3.1 as an implementation of a reduce function defined in defi-
nition 2.2.11 in step 13. And of course on the implementations of addition,
multiplication, and inversion of algebraic numbers and ideals in maximal
orders over algebraic number fields.

• The existence proof in Dedekind rings based on the existence proof of
proposition 1.8.7 in step 9 and of proposition 2.2.12 in step 13.

Algorithm 4.5.1: CHNF computation, COHEN

Input: Pseudomatrix M =

[
a1 . . . am
A1 . . . Am

]
=




a1 . . . am

a11 . . . a1m
...

...
an1 . . . anm


.

Output: Pseudomatrix M′ =

[
b1 . . . br
B1 . . . Br

]
in CHNF, the rank r, the map ρ, a

transformation matrix T with (A1, . . . ,Am)T = (0, . . . , 0,B1, . . . ,Br).
Steps:

1: i := m, T := Idm ∈ Km×m
2: Loop k := n, . . . , 1
3: Try to select a j ∈ Ni such that akj 6= 0. If not possible, goto next loop

cycle in step 2.

4: If j 6= i swap columns
[
ai
Ai

]
with

[
aj
Aj

]
of M and columns i and j (Ti and

Tj) of T . This is a SWAP transformation.
5: Set Ai := 1

aki
Ai, ai := akiai, Ti := 1

aki
Ti. This is an application of the

PUSH FACTOR transformation.
6: Loop j := 1, . . . , i− 1.
7: If akj = 0 goto next loop cycle in step 6.
8: d := akjaj + ai.
9: Find u ∈ ajd

−1 and v ∈ aid
−1 such that akju+v = 1 (algorithm 1.8.8).

10: Set Aj := Aj − akjAi, Ai := uAj + vAi, Tj := Tj − akjTi, Ti :=
uTj + vTi. Set aj := ajaid

−1, ai := d. This is an application of the
UNIMODULAR transformation.

11: Goto next loop cycle in step 6.
12: Loop j := i+ 1, . . . ,m.
13: Reduce akj modulo the ideal ai

aj
to a.

14: If akj 6= a then set q = a − akj , Aj := Aj + qAi, Tj := Tj + qTi. This
is an application of the ADD Q-TIMES transformation.

15: Goto next loop cycle in step 12.
16: Set ρ̂(i) := k, i := i− 1.
17: Goto next loop cycle in step 2.
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18: Delete all zero columns of M.
19: The rank of the pseudomatrix is r := n− i.
20: Set ρ(j) := ρ̂(j + i) for all j = 1, . . . , r.
21: End.

This algorithm is a generalization (for modules of not necessarily full rank) on the
basis of the algorithm described in [Coh96, Algorithm 2.6].

Proof. Since M is subject to valid transformations, proposition 4.2.3 ensures that
Mod (M) is constant in the course of the algorithm.

Steps 4 and 5 guarantee the entry at position (i, k) of M to be 1.

The loop in step 6 eliminates all entries of the k-th row at columns 1, . . . , i− 1, and
from proposition 1.8.7, it follows that parameters can be found.

The loop in step 12 reduces the entries of the k-th row at columns i + 1, . . . ,m to
satisfy the third property in the definition of the CHNF, by proposition 2.2.12.

Remarks:
(1) The freedom to choose a pivot entry in step 3 of the algorithm is the main factor

to increase the efficiency of the algorithm with good heuristics. Any nonzero
entry would do but the problem is that coefficient growth slows down further
arithmetic computation. Therefore it is important to choose a pivot entry which
can be expected to produce the least coefficient growth. A suggestion for a
reasonable heuristics is:

• The pivot entry should be “small” since it directly affects the coefficient
growth. For the notion of size, see 2.3.1, where the 1–norm of the coefficient
vector representing the pivot entry is sufficient here. This should be the
primary heuristics.

• The combined size of the entries of the pivot column, called column size
here, also affects the coefficient growth. The sum of the 1–vector norms of
the representations of the entries of the pivot column is a good measure.
This should be the secondary heuristics.

• An interesting refinement is to accept a little larger pivot size (primary
heuristics) for a considerable smaller column size (secondary heuristics).

• The secondary heuristics can be refined further: A little larger column size
can be acceptable if the column has more zero entries.

(2) For integer matrices, a much more extensive approach, called preview strat-
egy, is described in [Hop94, section 3.4]. At this stage of the development it is
not a hopeful approach for pseudomatrices over Dedekind domains. Integer
HNF computation is very fast, the only trouble is the coefficient explosion. So
the gap between HNF computation “at a glance” and “to difficult to compute”
is relatively large. CHNF computation for pseudomatrices over algebraic num-
ber fields is slow since the underlying arithmetics is for algebraic numbers, not
integers! Therefore only normal forms of reasonably sized pseudomatrices will
be computable at all. The actual gain by a clever heuristics is therefore much
smaller for CHNF computations. Therefore only cheap heuristic computations
are acceptable at all.
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(3) The best remainder strategy, introduced in [HHR93], has marked a large
step forward for integer HNF computations. The question arises if it is also
applicable for pseudomatrices over Dedekind domains. The idea of the best
remainder strategy is as follows.

The entries except one of a row must be cleared. This is not approached directly
by using the gcd of the row. Instead, a pivot is chosen, all entries of the row are
reduced (using a factor obtained with a remainder division) with this pivot.
Only if the pivot is already the gcd of this row the row is finished, otherwise
another pivot is chosen and the process is repeated. The correctness of the
Euclidean algorithm assures that the process terminates.

This is the problem for Dedekind rings, where the correctness of the Eu-
clidean algorithm cannot be guaranteed, provided that an analogy of the re-
mainder division is used by selecting a certain measure for an algebraic number.

An immediate consequence from the existence of the CHNF and proposition 4.4.4
is

Corollary 4.5.2:
If two pseudomatrices over a DEDEKIND ring are module equivalent, then they are also
transformation equivalent.

For each class of module equivalent pseudomatrices, there exists exactly one pseudo-
matrix in CHNF.

4.5.2 The BOSMA–POHST algorithm

This algorithm was introduced in the paper [BP91] and was the first algorithm
to compute a normal form over a maximal order in an algebraic number field. It
is formulated there in the context of relative extensions but can be seen as an
algorithm to transform a given pseudomatrix into the CHNF.

This formulation has a peculiarity. The input is not a general pseudomatrix but one
with only trivial coefficient ideals. Using the algorithm to compute a two element
representation of an ideal (see [vS87, pp.40–41]), it is not difficult to transform a
given pseudomatrix into one with trivial coefficient ideals.

Algorithm 4.5.3: CHNF computation, BOSMA–POHST

Input: Pseudomatrix M =

[
1D . . . 1D

A

]
.

Output: Pseudomatrix M′ in CHNF.
Steps:

1: Initialize D(n) := A.
2: Loop t := n, . . . , 1.

3: D(t) can be written as D(t) = (D1, . . . ,Dm) =



d11 · · · d1m

...
...

dt1 · · · dtm
0 · · · 0
...

...
0 · · · 0


.

4: Let at be the ideal generated by dt1, . . . , dtm. If at is the zero ideal, then
D(t−1) := D(t), Bt := 0, and go to the next loop cycle.
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5: Apply algorithm 1.8.6 to find e1, e2 ∈ at and f1, f2 ∈ a−1
t such that

e1f1 + e2f2 = 1.

6: Apply algorithm 1.8.9 to find g1, . . . , gm ∈ D such that
∑m
i=1 dtigi = e1

and h1, . . . , hm ∈ D such that
∑m
i=1 dtihi = e2.

7: Set C1 :=



∑m
i=1 gid1i

...∑m
i=1 gidt−1,i

e1

0
...
0


and C2 :=



∑m
i=1 hid1i

...∑m
i=1 hidt−1,i

e2

0
...
0


.

8: Let Bt := f1C1 + f2C2.
9: Let D(t−1) := (D′1, . . . ,D

′
m), where D′i := Di − ditBt for i ∈ Nm. Go to

the next loop cycle.

10: Let M′ =

[
a1 . . . an
B1 . . . Bn

]
. Delete all columns of M′ whose coefficient ideal

is the zero ideal.
11: Reduce all the entries above the diagonal of the pseudomatrix M′, as described

in the algorithm 4.5.1 in the loop from step 12.
12: End.

Proof. In step 5 we constructed ei and fi such that e1f1 + e2f2 = 1, therefore Bt
has a one in position t. Hence step 9 guarantees that D(t−1) has indeed the form
which is proposed in step 3.

From the construction of the gi and hi, it becomes clear that we actually constructed

C1 = D(t)

 g1

...
gm

 and C2 = D(t)

h1

...
hm

 .

and therefore we know C1,C2 ∈ Mod
(
D(t)

)
. From f1, f2 ∈ a−1

t , we conclude that
f1at ⊂ D and f2at ⊂ D. Hence

atBt = at(f1C1 + f2C2) ⊂ Mod
(
D(t)

)
. (4.5.1)

A simple induction (on t beginning with n and decreasing) shows Mod
(
D(t)

)
⊂

Mod (A). The induction start is trivial because A = D(n). Assume Mod
(
D(t)

)
⊂

Mod (A). By formula (4.5.1) it follows that atBt ⊂ Mod (A). On the other hand,
every column of D(t) is an element of Mod (A); hence, by construction in step 9,
all the columns of D(t−1) are elements of Mod (A), which finishes the induction.

Let E be an arbitrary element of Mod
(
D(t)

)
. Then there exist ki ∈ D such that

E =
∑m
i=1 kiDi. By the definition of the D′i in step 9, it follows that

E =

m∑
i=1

ki(D
′
i + ditBt) =

m∑
i=1

kiD
′
i + Bt

m∑
i=1

kidit ∈ atBt + Mod
(
D(t−1)

)
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since at =
∑m
i=1Ddit. With formula (4.5.1) and the easy consequence from algo-

rithm step 9, Mod
(
D(t−1)

)
⊂ Mod

(
D(t)

)
, and we conclude that

Mod
(
D(t)

)
= atBt + Mod

(
D(t−1)

)
. (4.5.2)

Equation (4.5.2) iteratively applied

Mod (A) = a1B1 + · · ·+ anBn.

The triangular form of (B1, . . . ,Bn) is another consequence of formula (4.5.1). The
ones on the diagonal are already mentioned.

4.5.3 Discussion of the differences of both algorithms

The Cohen algorithm has the freedom to choose a pivot entry, contrary to the
Bosma–Pohst algorithm. This might be an advantage, given a good pivoting strat-
egy.

The chain of actions of the Bosma–Pohst algorithm can be seen as n (where n
is the number of rows) complex pseudomatrix transformations. Therefore it can be
assumed that the intermediate entry growth is less than in the Cohen algorithm.
This view is supported by the practical investigation in section 6.4.

In the next chapter the concept of algorithms with reduction will be introduced.
Here a drawback of the complex pseudomatrix transformations in the Bosma–
Pohst algorithm becomes apparent. The Cohen algorithm uses the simpler ele-
mentary transformations and therefore enables the reduction after every transfor-
mation step. There is roughly one transformation for every matrix entry.

In sections 6.3 and 6.4 it is demonstrated how both algorithms behave practically.

4.5.4 Consequences of the existence of the normal form for matrices
over principal ideal rings

The existence of the CHNF for pseudomatrices has implications on the existence of
the HNF for matrices over principal ideal domains. It is not really necessary since
the proof (e.g. in [PZ93, p. 179]) is possible without the theory of pseudomatri-
ces. However, see the argumentation in subsection 3.2.4. The alternative proof is
intended to clarify the relationship of matrices and pseudomatrices.

Lemma 4.5.4:
Let D be a principal ideal domain (which implies D is a DEDEKIND ring) and K its
quotient field. For every matrix M over K, there exists a matrix in HERMITE normal
form which is module equivalent to M.

Proof. We consider the pseudomatrix M consisting of M and the trivial ideal for
every pseudomatrix column. There exists a course of pseudomatrix transformations
which transform M into a pseudomatrix N in CHNF. Since D is a principal ideal
domain, we can transform this N into another pseudomatrix N′ with a triangular
matrix and trivial ideals with some Push Factor transformations. Let N be the
matrix of the pseudomatrix N′. Then N is clearly in the Hermite normal form by
definition 3.2.4.
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With the equation2

Mod (M) = Mod (M) = Mod (N) = Mod (N′) = Mod (N) ,

the proof is completed.

But we can do more than that. Let D be a principal ideal domain and K its quotient

field. Consider the pseudomatrix M =

[
a1 . . . am
A1 . . . Am

]
, where ai is a fractional

D–ideal and Ai ∈ Kn for i ∈ Nm. For every ideal ai for i ∈ Nm, we can find an
ai ∈ K which generates ai. It makes sense to consider the matrix

M =
(
a1A1, . . . , amAm

)
(which will be called a corresponding matrix to M in the sequel) since we know
Mod (M) = Mod (M). There might be more than one possible generator for a given
ideal. Therefore there are usually many matrices corresponding to M.

We know that all generators of a given principal ideal only differ by a factor which
is a unit of D. Therefore the columns of two matrices corresponding to M also differ
by a factor which is a unit in D.
Consider the definition 3.1.2, the transformation number 3 allows the multiplication
of a unit in D. Therefore any two matrices corresponding to the same pseudomatrix
are transformation equivalent.

Therefore we are able to prove the following fact.

Lemma 4.5.5:
Let D be a principal ideal domain. Two matrices corresponding to (pseudomatrix) trans-
formation equivalent pseudomatrices are (matrix) transformation equivalent.

Proof. It is sufficient to prove the lemma for a pseudomatrixM and another pseudo-
matrixN produced fromM by a single elementary transformation of definition 4.2.1.

For the Swap transformation, there is a corresponding transformation in defini-
tion 3.1.2 (number 1).

For the Push Factor transformation, there is nothing to prove because M and
N correspond to the identical matrix (provided that the same generators of the
coefficient ideals are used.)

For the Two scaled transformation, there is a corresponding transformation in
definition 3.1.2 (number 3). Assume the same notations as in definition 4.2.1. Let the
ideals ai and aj resp. be generated by elements ai, aj ∈ K resp. For transformation
3 of definition 3.1.2 the parameters

d1 := c1 ∈ D,

d2 :=
c2ai
aj
∈ D,

d3 :=
c3aj
ai
∈ D,

d4 := c4 ∈ D

2. Compare the different notions of Mod for matrices in definition 3.1.1 and for pseudomatrices
in definition 4.1.2



4.6. STEINITZ FORMS 67

are used to transform the corresponding matrices.

For the Collect transformation, the corresponding matrix transformation is again
number 3 of definition 3.1.2. Let the ideals ai and aj resp. be generated by elements
ai, aj ∈ K resp. The parameters are

d1 :=
c1
ai
∈ D,

d2 :=
c2
aj
∈ D,

d3 := c3aj ∈ D,
d4 := c4ai ∈ D.

The Spread transformation can be dealt with analogous to the Collect transfor-
mation.

For the Insert zero column transformation, there is a corresponding transfor-
mation in definition 3.1.2 (number 4).

For the Delete zero column transformation, there is a corresponding transfor-
mation in definition 3.1.2 (number 5).

Now we have proved the following theorem

Theorem 4.5.6:
Let D be a principal ideal domain. For every matrix there exists a course of elementary
transformations which transform the matrix to a matrix in HERMITE normal form.

Proof. Let M be a matrix over K, the quotient field of D. Let a reduce function be
fixed.

Let M be the pseudomatrix which consists of M and trivial ideals. M can be
transformed to a pseudomatrix N in CHNF considering the chosen reduce function.
Let N be any matrix corresponding to N. Lemma 4.5.5 guarantees that M and N
are transformation equivalent.

According to definition 3.2.4 of the HNF and definition 4.4.1 we know that N is
in HNF except for the condition on the diagonal entries. This condition can be
satisfied with at most one application for every column of the transformation 3 in
definition 3.1.2.

4.6 Steinitz forms
Triangular forms are not the only desirable forms in the class of equivalent pseu-
domatrices. Another aim is to find the smallest possible pseudomatrix with trivial
coefficient ideals. This is equivalent to the task of finding a minimal D–generating
system of a given finitely generated D–module.

Let M be a pseudomatrix with n rows and rank n. Let

M′ =

[
a1 . . . an
A1 . . . An

]
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be the CHNF of M. We know that in general it is not possible to find an equivalent
pseudomatrix with n columns which has only trivial coefficient ideals. If this would
be the case, every relative extension would have a relative integral basis. But this
is not the case, as argumented in [BP91].

For the ideals ai with i ∈ Nn, we can find the two–element presentations

ai = αiD + βiD.

Therefore M′ gives a D–generating set for Mod (M) of 2n elements:

Mod (M) =

n∑
i=1

(
αiAiD + βiAiD

)
.

But we can do better than that! It is possible to find a pseudomatrix M′′ with n
columns which has trivial coefficient ideals with the exception of one ideal. The
ideal class of this ideal is an important invariant of Mod (M) and is called the
Steinitz class. Therefore pseudomatrices of the described form will be referred to
as Steinitz forms, with the convention that at most the last coefficient ideal may
be nontrivial.

From the Steinitz form

M′′ =

[
1D . . . 1D b
B1 . . . Bn−1 Bn

]
we can construct a minimal D–generating system of Mod (M). If b is a principal
ideal generated by b then

Mod (M) = bBnD +

n−1∑
i=1

BiD

which is even a D–basis. Otherwise, letting b = αD + βD,

Mod (M) = αBnD + βBnD +

n−1∑
i=1

BiD.

A difficult question is how to choose a unique Steinitz normal form from the the
set of all Steinitz forms. Unfortunately, uniqueness can not be obtained in the
relatively natural way like the CHNF. The following example shows that there are
pseudomatrix classes where all Steinitz forms are not triangular forms.
Example 4.6.1. Let ρ be a root of the integral polynomial x3 + 42x + 154. Let K
be the algebraic number field K = Q [ρ]. The maximal order oK of K is generated by
the powers of ρ. The class group is isomorphic to C3 ×C3 ×C3. Its generators are
the prime ideals p1 = 2D + ρD, p2 = 3D + (1 + ρ)D, and p3 = 7D + ρD.
The ideals a1 = p1p2 and a2 = p1p3 are also nonprincipal. Let a reduce function be
fixed such that one is reduced modulo the ideal a1a

−1
2 , and let

M =

( a1 a2

1 1
0 1

) .
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Then M is in CHNF. Lemma 4.4.3 states that all module equivalent pseudomatrices
have the same row ideals. The row ideals of M are a1 + a2 = p1 and a2, both of
which are not principal.

Assume

N =

( 1D b

1 b
0 1

)
is a triangular pseudomatrix in a STEINITZ form which is module equivalent to M.
By lemma 4.4.3, the second row ideal of M and N is equal, and therefore b = a2.
The equality of the first row ideal gives us ba2 + D = a1. Since M is integral, by
lemma 4.1.5, N is also integral. Therefore ba2 ⊂ D and we conclude ba2 = a1. But
this would imply bp3 = p2 which is a contradiction to the fact that p2 and p3 belong
to different ideal classes.

Therefore, in this there is no triangular pseudomatrix in a STEINITZ form N.
The example implies that the triangular shape cannot be used for the definition of
a Steinitz normal form.

A possible choice of a Steinitz normal form is the Steinitz form with the least
combined size (see subsection 2.3.1 for the notion of the quality of algebraic numbers
for instance) of the entries. This notion would be impractical because it would
probably be an exponentially hard problem to compute.

The following algorithm computes a Steinitz form. It is important that D is a
Dedekind ring because it is so for algorithm 1.8.5.

Algorithm 4.6.2: STEINITZ form computation
Input: Pseudomatrix M.

Output: Pseudomatrix in STEINITZ form: M′ =

[
1D . . . 1D b
B1 . . . Bn−1 Bn

]
.

Steps:

1: Transform M into its CHNF M′ =

[
a1 . . . an
A1 . . . An

]
.

2: Loop i = 1, . . . , n− 1.
3: If ai is a principal ideal, generated by ai ∈ K, apply a PUSH FACTOR trans-

formation with the parameter ai, and go to the next loop step.
4: Apply algorithm 1.8.5 to the ideals ai and ai+1 which yields the parameters

for a COLLECT transformation which is applied to M′.
5: M′ holds the required STEINITZ form.
6: End.

Remarks:
(1) It is possible to record a transformation matrix — it is based on the transfor-

mation matrix of the CHNF computation and the elementary matrix belonging
to the Collect and Push factor transformations.

(2) The step 3 does not require “If and only if”. This is important for algebraic
number fields, where the decision if an ideal is principal might be very difficult
to obtain. The standard implementation involves an enumeration of probably
exponential complexity. It is possible to improve this with methods described
in [Hes96] in cases where class group computations are feasible. But still it is
expensive.
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In the recent implementation there is a fast check on principality, where a few
elements of the ideal are tested if they generate the ideal. This check has proved
to be effective and cheap. A negative result does not guarantee that the ideal
in question is not principal — but this is not required by this algorithm.

The advantage of using a principal ideal is obvious: the Collect transforma-
tion might cause a coefficient growth which can sum up considerably.

(3) It is not really necessary for i to go from 1 to n− 1. Any other order would do
as good, which opens the possibility of a heuristic decision. But the order from
1 to n− 1 is very good since the first columns of a pseudomatrix in CHNF are
very sparse. If Collect transformations are required this strategy diminishes
coefficient growth and preserves part of the sparsity of the CHNF. Assuming a
full rank pseudomatrix the resulting pseudomatrix contains at least (n−1)(n−2)

2

zero entries (compared to n(n−1)
2 zero entries of the CHNF).

4.7 The determinant of a pseudomatrix

Definition 4.7.1:
Let M =

[
a1 . . . an

A

]
be a square pseudomatrix with n columns and rows over an

integral domain D. Then the determinant of M is defined as the fractional D–ideal
(or the zero ideal)

detM =Def detA

n∏
i=1

ai.

Definition 4.7.2:
Let M =

[
a1 . . . am

A

]
be a pseudomatrix with n rows and m columns over an

integral domain D. Let r ∈ N with r ≤ m, r ≤ n. Let A′ be an r × r submatrix of A
and i1, . . . , ir the indices of the columns of A which are columns of A′. Then the pseu-

domatrix
[

ai1 . . . air
A′

]
is called an r–subpseudomatrix of M. The determinant

of this r–subpseudomatrix is called an r–minor.

Definition 4.7.3:
The r–minor sum of a (possibly not square) pseudomatrix M is the sum of the de-
terminants of all r–subpseudomatrices of M. If no r–subpseudomatrices exist (because
r > min(m,n)), then the r–minor sum is the zero ideal per convention.

Remark:
We cannot expect minor sums of nonsquare matrices to obey the multipli-
cativity law. Therefore they should not be viewed as a generalization of the
determinant although minor sums have important applications similar to de-
terminants. They allow coefficient reduction of matrices during successive ma-
trix transformation. The following example demonstrates the main problem to
define a determinant–like function for nonsquare matrices:
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Example 4.7.4. Let D be an integral domain, K its quotient field. Let M be the
set of all nontrivial matrices (at least one row and one column) over D. Consider(

1

1

)
(1 1) =

(
1 1

1 1

)
and (1 1)

(
1

1

)
= (2).

So how should a multiplicative function det : M → D be defined? In any case it
cannot be consistent with

∣∣1 1
1 1

∣∣ = 0 and |2| = 2.

Definition 4.7.5:
Let r be the maximum of all natural numbers such that the r–minor sum of M is not
the zero ideal. r is called the rank of M. The rank minor sum of M is the r–minor
sum of M.

Lemma 4.7.6:
The determinant of a square pseudomatrix does not change upon applications of the
size preserving elementary transformations.

Proof. It suffices to show that the General transformation (see subsection 4.2.2)
does not change the determinant.

The product of the coefficient ideals changes by 1
e . The transformation of the matrix

can be viewed as the multiplication of an elementary matrix as in subsection 3.2.2.
The determinant of the elementary transformation matrix equals e. Therefore the
determinant of the matrix of the pseudomatrix changes by e and the determinant
of the whole pseudomatrix stays constant.

Proposition 4.7.7:
The r–minor sum of a pseudomatrix does not change upon applications of the elemen-
tary transformations.

Proof. Let M be a pseudomatrix before M′ resulting from an application of a
transformation.

It is proved first that the insertion of a zero column does not change the r–minor
sum. The set of r–subpseudomatrices of M′ contains the r–subpseudomatrices of
M and some pseudomatrices whose determinant is zero because they contain a zero
column. This is true even if the set of r–subpseudomatrices of M is empty and that
of M′ is not. If both sets are empty, both r–minors are zero per convention.

If a zero column is deleted, the set of r–subpseudomatrices of M contains the r–
subpseudomatrices of M′ and some pseudomatrices whose determinant is zero be-
cause they contain a zero column. The equality is correct even if one or both sets
of r–subpseudomatrices are empty.

It is left to show that an application of a transformation of the General type does
not change the r–minor sum.

Let

M =




a1 . . . am

a11 . . . a1m
...

...
an1 . . . anm


 .
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Let Φ be the set of all injections from Nr to Nm. Let Ψ be the set of all injections
from Nr to Nn. For φ ∈ Φ and ψ ∈ Ψ, let

Mφψ =




aφ(1) . . . aφ(m)

aφ(1)ψ(1) . . . aφ(1)ψ(m)

...
...

aφ(n)ψ(1) . . . aφ(n)ψ(m)


 .

Then the r–minor sum of M is∑
φ∈Φ

∑
ψ∈Ψ

det (Mφψ).

Applying a General two columns transformation to M results in the pseudo-
matrix M′. This transformation involves two columns Ai and Aj together with
their coefficient ideals ai and aj . The rest of the pseudomatrix M is constant. The
variables of this transformation are four elements c1, . . . , c4 ∈ K.(

Bi

Bj

)
=

(
c1 c2
c3 c4

)(
Ai

Aj

)
,

∣∣∣∣c1 c2c3 c4

∣∣∣∣ = e, aiaj = ebibj ,

c1 ∈ aib
−1
i , c2 ∈ ajb

−1
i , c3 ∈ aib

−1
j , c4 ∈ ajb

−1
j . (4.7.1)

The question is how the summands in the ideal sum
∑
φ∈Φ

∑
ψ∈Ψ det (Mφψ) are

affected by the General transformation of columns i and j.

Because the column transformation changes every entry of a column simultaneously,
we can use the simple implication

∀ψ ∈ Ψ,
∑
φ∈Φ

det (Mφψ) =
∑
φ∈Φ

det (M′φψ)

=⇒
∑
φ∈Φ

∑
ψ∈Ψ

det (Mφψ) =
∑
φ∈Φ

∑
ψ∈Ψ

det (M′φψ)

and show the equality for every ψ ∈ Ψ. In the sequel let ψ ∈ Ψ be fixed.

Let φ ∈ Φ. If neither i nor j is in the image set of φ, then obviously det (Mφψ) =
det (M′φψ). If both i and j are in the image set of φ, then we can apply lemma 4.7.6
and we have again det (Mφψ) = det (M′φψ).

This simple 1–1 correspondence is not true for those summands where exactly one
of i and j is in the image set of φ. Without loss of generality we can assume
i ∈ Imφ. There exists a φ′ ∈ Φ such that Imφ′ = Imφ \ {i} ∪ {j}. It is clear
that if we can show detMφψ + detMφ′ψ = detM′φψ + detM′φ′ψ, we can deduce∑
φ∈Φ det (Mφψ) =

∑
φ∈Φ det (M′φψ).

Applying the definition of the determinant for pseudomatrices and dividing the
ideals which are equal on both sides, this leaves us to show

ai det
(
. . .Ai . . .

)
+aj det

(
. . .Aj . . .

)
= bi det

(
. . .Bi . . .

)
+bj det

(
. . .Bj . . .

)
where the four matrix patterns denote the same matrix except for one column at a
certain position which is Ai, Aj , Bi, and Bj resp.
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We have

bi det
(
. . .Bi . . .

)
+ bj det

(
. . .Bj . . .

)
= bi det

(
. . . c1Ai + c2Aj . . .

)
+ bj det

(
. . . c3Ai + c4Aj . . .

)
.

Since the determinant of matrices is linear in every column, we have

bi det
(
. . .Bi . . .

)
+ bj det

(
. . .Bj . . .

)
= bi

(
c1 det

(
. . .Ai . . .

)
+ c2 det

(
. . .Aj . . .

))
+bj

(
c3 det

(
. . .Ai . . .

)
+ c4 det

(
. . .Aj . . .

))
.

For a fractional D–ideal over an integral domain D, we know

a(a+ b) ⊂ aa+ ab, where a, b ∈ K;

therefore

bi det
(
. . .Bi . . .

)
+ bj det

(
. . .Bj . . .

)
⊂ (bic1 + bjc3) det

(
. . .Ai . . .

)
+ (bic2 + bjc4) det

(
. . .Aj . . .

)
.

Because of the membership requirements on c1, . . . , c4 in formula (4.7.1), we con-
clude that

bi det
(
. . .Bi . . .

)
+ bj det

(
. . .Bj . . .

)
⊂ ai det

(
. . .Ai . . .

)
+ aj det

(
. . .Aj . . .

)
.

Up to this point, we have only proved that the r–minor sum of M′ is contained
in the r–minor sum of M. But there is an inverse transformation from M′ to M
(lemma 4.2.2) which yields the opposite containment.

4.8 Reduction of pseudomatrices
Let D be a Dedekind ring and K its quotient field. Let M be a pseudomatrix
over D. The normal form algorithm 4.5.1 or 4.5.3 transform M ssuccessively into
its normal form:

M = M1 −→ . . . −→Mk −→Mk+1 −→ . . . −→Mz =




c1 . . . cn

1 ∗
. . .

0 1



 .

In every step k ∈ Nz−1 the property Mod (Mk) = Mod (Mk+1) is satisfied.
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This section describes modifications to this algorithm resulting from the insertion
of a reduction step redR−−−−→ after every step:

Mk
redR−−−−→M′k −→Mk+1.

The purpose of this is as follows: The normal form algorithm directly approaches the
triangular form of the pseudomatrix without care about the size (see subsection 2.3.1
for the meaning of size in the case of algebraic number rings) of the entries of
the intermediate pseudomatrices Mk. If the pseudomatrix is large and difficult,
the growth of the entries of Mk causes the algorithm to fail from memory and
calculation time problems. Reduction steps will avoid or delay the entry explosion.

4.8.1 The general reduction process

Let R be a pseudomatrix which satisfies Mod (R) ⊂ Mod (M). Only pseudomatrices
of a very simple form are useful here — we will consider only diagonal forms. redR

denotes a reduction (defined below in definition 4.8.1) of Mk using the submodules
of R such that

Mod (Mk) + Mod (R) = Mod (M′k) + Mod (R) . (4.8.1)

Actually, it seems more natrural to demand Mod (Mk) = Mod (M′k). But the above
equation is more general and allows a reduction process, which has proved to be
very effective.

Definition 4.8.1 (Reduction of pseudomatrices):
Let R be a pseudomatrix with Mod (R) ⊂ Mod (M). A proper reduction redR is any
finite number of single reduction step applications. In a single reduction step, we choose

a column




r

r1
...
rn


 of R, a column




a

a1
...
an


 of M, and an element q ∈ r

a . We

replace the column




a

a1
...
an


 of M with the column




a

a1 + qr1
...

an + qrn


.

This definition does not specify a method to reduce. It only gives a frame for the
allowed operations.

Lemma 4.8.2:
For any reduction of the above kind, the equation (4.8.1) holds.

Proof. It will be shown that the equation holds for every single reduction step.
Let the notations be as in the above definition. Let M be the pseudomatrix before
reduction, M′ after.

Mod




a

a1 + qr1
...

an + qrn


 ⊂ Mod




a

a1
...
an


+ Mod




a

qr1
...
qrn



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= a

a1

...
an

+ qa

 r1

...
rn

 ⊂ a

a1

...
an

+ r

 r1

...
rn

 ⊂ Mod (M) + Mod (R) .

On the other hand,

Mod




a

a1
...
an


 = Mod




a

a1 + qr1 − qr1
...

an + qrn − qrn




⊂ Mod




a

a1 + qr1
...

an + qrn


+ Mod




a

qr1
...
qrn


 ⊂ Mod (M′) + Mod (R) .

The general principles of reduction are

Two–phase method We choose R such that Mod (R) ⊂ Mod (M). This implies
Mod (M) = Mod (Mz) + Mod (R). After we transformed M into its normal
form Mz (with reduction modulo R), we know that the concatenation N :=
Mz + R satisfies Mod (N) = Mod (M). Therefore we can apply the normal
form algorithm to N, this time without reduction. The first normal form
application with reduction is called first phase and the second normal form
application without reduction second phase.

Strict equality method We choose an R such that, for every step, Mod (Mk) =
Mod (M′k) is guaranteed. If Mz is in the required normal form, then we are
finished because Mod (M) = Mod (Mz).
In practice it is much too difficult to ensure Mod (Mk) = Mod (M′k) in every
step.

Determinant reduction method We use

R =




d . . . d

1 0
. . .

0 1



 ,

where d is an integral multiple of the rank minor sum of M, provided M
has full rank (see definition 4.7.5). As well as in the two–phase method the
resulted CHNF is not equivalent toM. But there is a method to construct the
correct CHNF which is simpler than another CHNF computation without
reduction. It is described in [Coh96, p.16].
The drawback of this method is that there usually are diagonal reducers
whose generated module is much larger than the reducer obtained with the
determinant.
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4.8.2 Suitable reducers

A reducer R should represent a large Mod (R), on the one hand, so that there are
many options to reduce the given pseudomatrix. On the other hand, R should be
of a very simple form, such that the algorithm which uses the reducer can be fast
and efficient. This can be contradictory, so there has to be a good trade–off between
both.

Obviously the pseudomatrix itself is a valid reducer of it, but this would be very
impractical. Three different types of reducers will be introduced. Only reducers with
a diagonal matrix will be used here since they allow for the reduction of a single
entry separately.

For a diagonal reducer the two–phase method is very useful. The second phase is
relatively cheap since R is very sparse and Mz is already in normal form. This is
demonstrated practically in section 6.6. In the first phase we have a maximum of
reduction possibilities compared with the strict equality method and the determiant
reduction method.

The following is based on the two–phase method.

General diagonal reducer

R =




r1 . . . rn

1 0
. . .

0 1



 ,
where ri is a fractional D–ideal for i ∈ Nm. The underlying method is as follows:
Let 


a1 . . . am

a11 . . . a1m
...

...
an1 . . . anm




be the pseudomatrix to reduce. redR−−−−→ does not change the ideals ai, but every
single entry aij of the matrix is reduced with the following procedure:


. . . aj . . .

...
· · · aij · · ·

...




redR−−−−→



. . . aj . . .

...
· · · aij + rij · · ·

...



 with rij ∈
ri
aj
,

which is obviously a valid reduction as in definition 4.8.1.

But how can we choose a good rij for which a reduction indeed takes place? In
chapter 2 I specify the notion of reduce functions and give different algorithms.
Now let a reduce function modR (see definition 2.2.11) be fixed. Then

rij = modR
ri
aj

(aij)− aij .
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One–ideal reducer

R =




r . . . r

1 0
. . .

0 1



 ,
where r is a fractional D–ideal. This reducer is a special case of the general diagonal
reducer. The algorithmic advantage of its simplicity is as follows:
A basic step in the reduction process


. . . aj . . .

...
· · · aij · · ·

...




redR−−−−→



. . . aj . . .

...
· · · aij + rij · · ·

...



, where rij ∈
r

aj
,

uses the ideal quotient r
aj

to reduce the aij . Before we can do that, we have to
compute the ideal quotient r

aj
of r and aj . Ideal division is computationally relatively

expensive.
For one column of M, we have to do only one ideal division instead of n. The
algorithm 4.5.1 frequently changes only the entries of the matrix and not the ideals.
A basic computational idea is not to divide the two ideals for every entry, but to
store the ideal quotient until the ideal aj changes.
So in this case we have to store m ideals, which is moderate. Compare this to
the general diagonal reducer case where we had to store mn ideals, which can be
considered intolerable. The ideals are usually stored with a Z–basis, which requires
n2 integers (and some more O(n) information which is unimportant) for a total of
mn3 integers. Compare this to a whole pseudomatrix which requires m ideals (n2

integers each) and mn algebraic numbers (n integers each) which totals to 2mn2

integers. So storing the ideal quotients raises the memory complexity by one power!
If we have a general reducer

R =




r1 . . . rn

1 0
. . .

0 1



 ,
we can simply transform this to a one–ideal reducer

R′ =




r . . . r

1 0
. . .

0 1



 where r := lcm{r1, . . . , rn},

satisfying Mod (R′) ⊂ Mod (R) because r ⊂ ri, ∀i ∈ Nn. As the price for the
more efficient reduction method Mod (R′) is possibly smaller than Mod (R), this
translates to less reduction power.
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Rational reducer

R =



rD . . . rD
1 0

. . .
0 1



 ,

where rD denotes the ideal generated by the rational number r.

The point in using this even simpler reducer is to have no ideal division at all.
Instead of reducing an algebraic number with the ideal rD

a , we reduce with the
ideal

r den(a) ⊂ rD
a ,

where den() denotes the denominator of the ideal.

It is easy to see that this is correct because

aden(a) is an integral ideal
=⇒ aden(a) ⊂ 1D
=⇒ den(a)D ⊂ 1

a

=⇒ r den(a)D ⊂ rD
a .

So one point of this algorithm is that we save the ideal divisions. Another one is still
more important: It is much easier to reduce an algebraic number with a rational
number than to reduce with an ideal, which was described in subsection 2.3.6.

The method can be refined to increase the reduction power at the expense of some
extra computation time:

Let e be the maximal natural factor of aden(a) (see definition 1.3.5),

e = max
{
e ∈ N | aden(a) ⊂ eD

}
.

Then

r den(a)

e
D ⊂ rD

a
,

which means that we may reduce even by the rational number r den(a)
e instead of

r den(a).

If we have a one–ideal reducer

R =




r . . . r

1 0
. . .

0 1



 ,
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we have the rational reducer

R′ =



rD . . . rD
1 0

. . .
0 1



 ,

where r is the minimum of the ideal r (see definition 1.3.1). Again Mod (R′) is
possibly smaller than Mod (M) which translates to less reduction power.

Experiments to compare the efficiency of the different reducers can be found in
section 6.3.

4.8.3 Obtaining reducers

In important applications (like relative ideals), we can assume reducers to be known
in advance. If this is not the case, we obtain a reducer with the method below.
Unfortunately, the reducers obtained with this method are usually quite bad.

Proposition 4.8.3:
Let M be an integral pseudomatrix with n rows and m columns. Let d be the n–minor
sum of M (see definition 4.7.3). Then dDn ⊂ Mod (M).

Proof. Since M is integral, by lemma 4.1.5, Mod (M) ⊂ Dn. If n > m, the n–minor
sum is zero, which produces a zero pseudomatrix as a reducer which is equivalent
to no reduction at all. Thus, there is nothing to prove. The rank of M must be n
for d not to be zero.

By proposition 4.7.7, the n–minor sum is not altered by applications of elementary
transformations. Since we established the equivalence of module and transformation
equivalence, we know that the n–minor sum of M equals the n–minor sum of the
CHNF M′ of M. Since M was integral, so is its CHNF.

It remains to prove the theorem for square matrices in CHNF. Let

M =




a1 . . . an

1 ∗
. . .

0 1



 and d =

n∏
i=1

ai.

We have to show

∀i ∈ Nn, dEi ⊂ Mod (M) ,

where Ei denotes the i-th canonical vector in Dn.
Since M is integral and has at least one entry equal to one in every column, we
have ai ⊂ D, for any i ∈ Nn. Let di :=

∏i
j=1 aj . It is sufficient to prove

∀i ∈ Nn, diEi ⊂ Mod (M) . (4.8.2)

We prove that by induction over i, starting from 1.
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For i = 1 we see that the first column of M is identical to
[
a1

E1

]
, so there is nothing

to prove.

Let 4.8.2 be proved for all j ∈ Ni−1. Let the j-th entry of the i-th column of M be
denoted by cj . Then the i-th column of M can be written as:

Ai = Ei +

i−1∑
j=1

cjEj .

Let j ∈ Ni−1. SinceM is assumed to be integral, we have aicj ⊂ D. By the definition
of di, we conclude

dicj ⊂ dia
−1
i ⊂ dj and

dicjEj ⊂ djEj ⊂ Mod (M) by induction assumption.

By definition, aiAi ⊂ Mod (M). By definition of di, this gives diAi ⊂ Mod (M).

Now

diEi = di

Ai −
i−1∑
j=1

cjEj

 ⊂ diAi +

i−1∑
j=1

dicjEj ⊂ Mod (M)

which finishes the induction step and the proof.

Definition 4.8.4:
The denominator of a pseudomatrix M (over an algebraic number field over Q ) is the
minimal natural number d such that dM is an integral pseudomatrix.

Corollary 4.8.5:
Let d be the denominator of a pseudomatrix M with n rows and d be the n–minor sum
of dM. Then

d

d
Dn ⊂ Mod (M) .

In other words




d
d . . . d

d

1 0
. . .

0 1



 is a proper one–ideal reducer for M.

The reducer obtained by this corollary is tested in section 6.4.

4.9 The module of pseudomatrices
Definition 4.9.1:

Let

M =

[
a1 . . . am
A1 . . . Am

]
and N =

[
b1 . . . bl
B1 . . . Bl

]
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be two pseudomatrices with the same number of rows. Addition is defined as the con-
catenation

M + N =Def

[
a1 . . . am b1 . . . bl
A1 . . . Am B1 . . . Bl

]
.

Let a ∈ K. Scalar multiplication is defined as

aM =Def

[
aa1 . . . aam
A1 . . . Am

]
.

These definitions are consistent with addition and scalar multiplication of D–
modules:

Mod (M) + Mod (N) = Mod (M + N) and
aMod (M) = Mod (aM) .

(4.9.1)

It is easily seen that the pseudomatrices with a fixed number of rows form a D–
module with these definitions.

4.10 Dual pseudomatrices and intersection of modules

Definition 4.10.1:
Let M =

[
a1 . . . an

A

]
be a square pseudomatrix with n rows and rank n. Then

the dual pseudomatrix is the pseudomatrix M′ =

[
a−1

1 . . . a−1
n(

Atr
)−1

]
.

For invertible square matricesA over fields we have (Atr)−1 = (A−1)tr and therefore
M = M′′.

Lemma 4.10.2:
Let M be a pseudomatrix and C ∈ Kn. Then

C ∈ Mod (M) ⇐⇒ ∀D ∈ Mod (M′) : CtrD ∈ D.

Proof. Let the notation of M and M′ be as in definition 4.10.1.

Let C ∈ Kn. Since A is invertible, there are unique ai ∈ K, for i ∈ Nn, such that

C = A

a1

...
an

 .



82 CHAPTER 4. THE THEORY OF PSEUDOMATRICES

Then,

C ∈ Mod (M)

⇐⇒ A

a1

...
an

 ∈ Mod (M)

⇐⇒ ∀i ∈ Nn, ai ∈ ai

⇐⇒ ∀i ∈ Nn,∀bi ∈ a−1
i : aibi ∈ D

⇐⇒ ∀bi ∈ a−1
i , where i ∈ Nn,

n∑
i=1

aibi ∈ D

⇐⇒ ∀bi ∈ a−1
i , where i ∈ Nn, (a1, . . . , an)Atr(Atr)−1

 b1
...
bn

 ∈ D

⇐⇒ ∀bi ∈ a−1
i , where i ∈ Nn,

A

a1

...
an




tr

(Atr)−1

 b1
...
bn

 ∈ D
⇐⇒ ∀B ∈ Mod (M′) ,CtrB ∈ D

since

Mod (M′) =

 (Atr)−1

 b1
...
bn


∣∣∣∣∣∣∣ bi ∈ a−1

i ,∀i ∈ Nn

 .

Proposition 4.10.3:
Let M and N be two pseudomatrices with n rows and columns of rank n. Then

Mod (M) ∩Mod (N) = Mod (R′) ,

where R is the CHNF of the pseudomatrix M′ + N′.

Proof. Let C ∈ K.

C ∈ Mod (M) ∩Mod (N)

⇐⇒ C ∈ Mod (M) and C ∈ Mod (N)

⇐⇒ ∀B ∈ Mod (M′) , CtrB ∈ D and

∀E ∈ Mod (N′) , CtrE ∈ D, by lemma 4.10.2

⇐⇒ ∀B ∈ Mod (M′) + Mod (N′) , CtrB ∈ D
⇐⇒ ∀B ∈ Mod (M′ + N′) , CtrB ∈ D, by (4.9.1)
⇐⇒ C ∈ Mod (R′) , where R is the normal form of M′ + N′,

by lemma 4.10.2.

For the last conclusion we needed the fact that the rank of M and N is n which
implies that the rank of M′ + N′ also equals n. Then the normal form R is square
and has rank n, therefore lemma 4.10.2 may be applied.



Chapter 5

Relative ideals

For an introduction to relative extensions in algebraic number fields see [BP91].
See [DP98] for applications which stress the importance of computations in relative
extensions in connection with the computation of subfields in [Klü97].

The arithmetic of relative ideals is one important application of the normal form
algorithm over algebraic number rings. In [Fri97] the round–two–algorithm is de-
veloped for the computation of a pseudobasis of the relative maximal order where
the arithmetic of relative ideals plays an important role.

What is meant by relative ideals? A relative ideal is an ideal in an order of an
algebraic number field as described in chapter 1. The terminology “relative” refers
to a special presentation of this ideal using a nontrivial subfield. Relative ideal is a
shorthand for ideal in relative representation.

5.1 Relative ideals in algebraic number fields
Let K be an algebraic number field over Q with finite degree [K : Q ] = m > 1 and
L be a finite algebraic extension of K with degree [L : K] = n > 1. Let oK be the
ring of integers of K, which is a Dedekind domain.

Let O be an order of L. Then O does not always have an oK–basis. But, at least O
has a presentation

O =

n∑
i=1

ciωi, where ci are fractional oK–ideals and ωi ∈ L, (5.1.1)

which is a relative pseudobasis of O. Ω = (ω1, . . . , ωn) is also a basis for L as a
K–vector space.
An algebraic number α ∈ L can be represented as

α =

n∑
i=1

aiωi, where ai ∈ K,

which is called the relative representation of the algebraic number α.

Definition 5.1.1:
An O–ideal A with at least one of the following presentations is called an ideal in
relative representation or, shortly, a relative ideal.

83
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pseudobasis presentation A = a1α1 + · · · + anαn, where ai is a fractional oK–ideal
and αi ∈ L are algebraic numbers in relative representation for all i ∈ Nn.

two–element presentation A = Oα1 +Oα2, where α1, α2 ∈ L are algebraic numbers
in relative representation.

generalized two–element presentation A = Oa1α1 + Oa2α2, where a1 and a2 are
fractional oK–ideals and α1, α2 ∈ L are algebraic numbers in relative represen-
tation.

5.2 Basic functions
Relative ideals can be seen as a generalization of the ideals as they are described
in chapter 1, which are called absolute ideals in this chapter1. The presentations
there are based on the presentation of integral algebraic numbers as vectors over Z.
This leads to the representation of integral ideals with matrices over Z.
In this chapter we deal with algebraic numbers represented as vectors of algebraic
numbers, which leads to the presentation of ideals as pseudomatrices of algebraic
numbers and ideals. The main complication is that we cannot use matrices over oK
to represent relative ideals if oK is not a principal ideal domain.

We are able to generalize the algorithms for absolute ideals, to relative ideals but
quite a few problems have to solved.

5.2.1 The corresponding absolute order

Since L can be viewed as an algebraic number field over Q , O has a Z–basis

O =

nm∑
i=1

ξiZ, where ξi ∈ L for i ∈ Nnm. (5.2.1)

Assumption 5.2.1. Writing ξi ∈ L in formula (5.2.1) and ωi ∈ L in (5.1.1) ac-
tually means two different things: in the former, algebraic numbers are presented
as vectors over Q and in the latter, as vectors with entries over K, which are pre-
sented as vectors over Q themselves. In the sequel I will identify both presentations,
assuming that the transformation between both is well–established.

The computational connection between different representations of one algebraic
number field is not trivial. First of all it depends on the way the algebraic number
field is presented. See [Dab93] for the background of the ideas which have been
implemented in KANT.
The basis Ξ = (ξ1, . . . , ξnm) can be obtained from the representation in formula
(5.1.1). Let the oK–ideals c1, . . . , cn be given by Z–bases

ci =

m∑
j=1

cijZ, where cij ∈ K for i ∈ Nn, j ∈ Nm.

Then

O =

n∑
i=1

 m∑
j=1

cijZ

ωi =

n∑
i=1

m∑
j=1

cijωiZ.

1. Absolute ideals are relative ideals in the special case K=Q .
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5.2.2 Transformation from relative to absolute ideals

Let the ideal A be given by an oK–pseudobasis, A = a1α1 + · · ·+ anαn, where ai is
a fractional oK–ideal and αi ∈ L for i ∈ Nn. Let the ai be given by Z–bases,

ai = ai1Z + · · ·+ aimZ, where aij ∈ K, i ∈ Nn, j ∈ Nm.

Then we have a Z–generating system of A as:

A =

n∑
i=1

m∑
j=1

αiaijZ.

If A is given in the generalized two–element presentation

A = Oa1α1 +Oa2α2,

where a1 and a2 are fractional oK–ideals and α1, α2 ∈ L, then we have to use the
pseudobasis of O:

O =

n∑
i=1

ciωi, ci fractional oK–ideals, ωi ∈ L, for i ∈ Nm.

Let the oK–ideals a1, a2, c1, . . . , cn be given by Z–bases,

al =

m∑
j=1

aljZ, where alj ∈ K for l = 1, 2, j ∈ Nm, and

ci =

m∑
j=1

cijZ, where cij ∈ K for i ∈ Nn, j ∈ Nm.

Then

A =

 n∑
i=1

ωi

m∑
j=1

cijZ

( m∑
k=1

a1kZ

)
α1 +

 n∑
i=1

ωi

m∑
j=1

cijZ

( m∑
k=1

a2kZ

)
α2

=

2∑
l=1

n∑
i=1

m∑
j=1

m∑
k=1

cijalkαlωiZ.

which is a set of 2m2n Z–generators for A which can be reduced to a Z–basis with
a HNF computation.

If the ideals a1 and a2 are trivial the above formula simplifies to

A =

2∑
l=1

n∑
i=1

m∑
j=1

cijαlωiZ

and only 2mn Z–generators have to be considered.

5.2.3 Transformation from absolute ideals in relative ideals

If the ideal is given in two–element presentation, nothing is to be done using as-
sumption 5.2.1. If the ideal is given as a Z–basis, we have nm Z–generators. These
are also oK–generators. They can be reduced to a oK–pseudobasis with a CHNF
computation.
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5.3 Arithmetic in relative ideals
Let the relative ideals A and B be represented as

A = a1α1 + · · ·+ anαn and B = b1β1 + · · ·+ bnβn.

Then

A + B = a1α1 + · · ·+ anαn + b1β1 + · · ·+ bnβn.

This is a presentation with 2n summands. The normal form algorithm is able to
find fractional oK–ideals c1, . . . , cn and γ1, . . . , γn ∈ L such that

a1α1 + · · ·+ anαn + b1β1 + · · ·+ bnβn = c1γ1 + · · ·+ cnγn,

which gives us a pseudobasis of the relative ideal A + B.

With the same notations as above, we have for the product

AB =

n∑
i=1

n∑
j=1

aibjαiβj .

So we multiply each aibj and αiβj , which gives us a presentation with n2 summands.
The normal form algorithm can reduce this to a pseudobasis.

We can also use the two other algorithms introduced in subsection 1.2.1 for relative
ideals.

For the mixed multiplication, let B be presented with an oK–basis as above and
A = Oα1 +Oα2, where α1, α2 ∈ L. B being an ideal implies OB = B. Therefore

AB = Oα1B +Oα2B = α1B + α2B =

2∑
k=1

n∑
i=1

bi(αkβi).

which is to be reduced by the normal form algorithm.

One important prerequisite for the four generator multiplication method is the
existence of the representation matrix for algebraic elements in relative extensions,
see [Pau96]. Let A = Oα1 + Oα2 and B = Oβ1 + Oβ2, where α1, α2, β1, β2 ∈ L.
Then

AB = Oα1β1 +Oα2β1 +Oα1β2 +Oα2β2.

An efficient algorithm for inversion and division of relative ideals in the relative
maximal order is developed in [Fri97, pp. 93–98].

5.4 Computing the minimum of a relative ideal
Let A be represented as A = a1α1 + · · · + anαn. We want to compute the oK–
minimum ideal of definition 1.3.1 which will simply be called minimum in the fol-
lowing. The general method, in analogy to the algorithm 1.3.2, uses the fact that
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(α1, . . . , αn) is a K–vector space basis for L. Therefore there exist bi ∈ K, where
i ∈ Nn, such that

n∑
i=1

biαi = 1.

Let c ∈ K∩A. Then c =
∑n
i=1 cbiαi. Since a1α1 + · · ·+anαn is indeed a pseudobasis

this is equivalent to ∀i ∈ Nn : cbi ∈ ai. We conclude that

K ∩ A =

n⋂
i=1

ai
bi
.

Since the αi are given in the basis Ω, we are given a matrix M which satisfies
(α1, . . . , αn) = ΩM . Let the inverse of this matrix be M−1 =

(
mij

)
i,j∈Nn

. If we can
find ci ∈ K, where i ∈ Nn, such that

∑n
i=1 ciωi = 1, then we have

n∑
j=1

αj

n∑
i=1

cimji = 1,

which provides

bj =

n∑
i=1

cimji ∈ K with
n∑
i=1

biαi = 1.

If the basis Ω has the property ω1 = 1 and the matrix M is the matrix of a
pseudomatrix in CHNF, the above formula for the minimum simplifies to:

K ∩ A = a1.

So the only difficult part is to find a representation of the 1. How this can be
done depends on the representation of the order O. We can apply the normal form
algorithm to a generating system of O which gives us another pseudobasis O with
the first basis element equal to 1. We can use the basis transformation to get a
representation of the 1 in the original representation.

5.5 Using the minimum for arithmetic
In analogy to section 1.4 we can improve the efficiency of ideal arithmetic by using
the minimum ideals.

Let A be a relative ideal and m its oK–minimum ideal of definition 1.3.1. Then we
have mO ⊂ A. Therefore mO is a reducer of A in the sense of definition 4.8.1.

If we add or multiply two relative ideals with the above methods, we get a generating
pseudomatrix which is subjected to a normal form computation. The following
lemma provides a good reducer for this normal form computation:

Lemma 5.5.1:
Let A and B be (fractional) ideals in the order O. Then

minA + B ⊃ minA + minB and
minAB ⊃ minAminB.

(5.5.1)
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5.6 Least common multiplier for relative ideals
For ideals A and B over a maximal order we have the property

lcm(A,B) =
AB

A + B
,

this can also be used to compute the lcm of relative ideals.

There is a more sophisticated method to compute the lcm using the algorithm
developed in section 4.10. Let M1 and M2 be the pseudomatrices representing A
and B. Proposition 4.10.3 gives us a pseudomatrix N which satisfies

Mod (N) = Mod (M1) ∩Mod (M2) .

Since lcm(A,B) = A ∩B, we conclude that N represents lcm(A,B).



Chapter 6

Examples

6.1 General remarks
Not all the experiments of this chapter have been performed on the same computer.
To compare computation times of different computers the test program “relidmark”
is used. This idea is similar to “GAPstones”, which is used to compare the run time
for GAP programs on different computers. The “relidmark” number is inversely
proportional to the computation time. The test file contains creation of absolute
and relative orders, computations of class groups, and multiplication of relative
ideals.
The “GAPstones” number only measures the speed of integer arithmetics. There-
fore it is independent on any improvements of the GAP system. In opposition,
“relidmark” is dependent on the speed of various number theoretic algorithms in
KANT.
The “relidmark” is normed to be equal to the “GAPstones” number on the HP series
700 computers which are mainly used for the development of KANT. The computers
used for the experiments range from 74000 to 259000 relidmark.

6.2 Comparison of the different multiplication algorithms
for absolute ideals

Let p ∈ Z[x] be an irreducible polynomial of degree n ∈ N. A root ρ of this polyno-
mial generates an integral domain O = Z[ρ] which is a finitely generated Z–module.
Let K be the quotient field of O. Then O is an order of K, called an equation order.
Let oK be a maximal order of an algebraic number field K. There exists a Z–basis
Ω = (ω1, . . . , ωn) for oK.
This situation is called an absolute extension and is the starting point for most
of the algebraic number theoretic computations in KANT. Algebraic numbers and
ideals over oK are represented in this basis Ω.

Aim
How does the time efficiency of different multiplication algorithms for absolute ideals
depend on the degree of the algebraic number field and the size of the ideals?
The answer will give heuristics for the question of how to use the different multi-
plication algorithms to increase the overall time efficiency of the multiplication for
absolute ideals.

89
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Notations

Presentations of an ideal

The following abbreviations for ideal presentations, introduced in section 1.1 are
used in the tables.
basis

The Z–basis presentation, where the matrix representing the ideal is assumed
to be in HNF.

2elt
The two–element presentation where one element is assumed to be rational,
or

normal
normal presentation.

Transformations

Using one presentation of an ideal it is possible to compute another presentation.
The following abbreviations for presentation transformations are used in the tables.
basis→2elt

produces a two–element presentation of an ideal given by a basis presenta-
tion,

2elt→basis
produces a basis presentation of an ideal given by a two–element presenta-
tion,

2elt→normal
produces a normal presentation of an ideal given by a two–element presen-
tation, and

basis→normal
produces a normal presentation of an ideal given by a basis presentation.

Because a normal presentation is a special two–element presentation, the trans-
formation normal→2elt is trivial and the transformation normal→basis can be
considered identical to the transformation 2elt→basis because there is no special
algorithm.

Multiplication algorithms

Four different multiplication algorithms were discussed in subsection 1.2.1 which
are tabulated as
basis mult

multiplication using the two Z–bases of the ideals. From the algorithm it is
clear that a permutation of the two factors does not make a difference in
computation costs.

mixed mult
multiplication using one Z–basis and one two–element presentation. From
the algorithm, it is clear that a permutation of the two factors might make
a difference in computation costs.

four mult
multiplication using the two–element presentations of both ideals. From the
algorithm it is clear that a permutation of the two factors does not make a
difference in computation costs.
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normal mult
multiplication of two ideals in normal presentation. This multiplication might
involve another transformation of the presentations whose computation costs
are added to the actual multiplication costs (which are very low). Again it
is clear that a permutation of the two factors does not make a difference in
computation costs.

Design of the test

Six different number fields from degree 3 to 33 are used. They are given by their
maximal orders. For every number field, several ideal test sets are used. Each ideal
test set contains ideals of roughly the same computational difficulty. For every ideal
test set the average of the computation times of randomly chosen ideals is used.

6.2.1 Example number fields

Number fields are tabulated by their degrees, only one number field for each degree
is used.

The number field is defined by a root ρ of a polynomial over Z. Because the different
roots of an irreducible polynomial are algebraically equivalent, it is not important
which of the different roots of the polynomial p the root ρ actually is. The integral
basis (which is a basis of the maximal order oK of K) is given, where it does not
include huge coefficients. It is expressed in the powers of ρ. For the complete example
generation, given as KASH programs, see [Hop]. Note that the actual integral basis
is not really relevant for the significance of the result since many randomly chosen
ideals are used, which should eliminate any effects of peculiarities of the maximal
order basis.
number field of degree 3 Let K be the number field Q [ρ], where ρ satisfies

ρ3 + ρ2 + 81ρ+ 1 = 0. It has discriminant -529444 and class number 104.
The powers of ρ form a basis of the maximal order oK.

number field of degree 6 Let K be the number field Q [ρ], where ρ satisfies
ρ6 + 3ρ5 − 3115ρ4 − 6235ρ3 + 2271309ρ2 + 13868999ρ− 219506499 = 0. It
has discriminant 114 · 2635134 and class number 4.
The maximal order oK has the basis

(1, ρ, ρ2, ρ3, ρ4,

ω = 1004429297+909886177ρ+3560597177ρ2+1574028943ρ3+2829966955ρ4+ρ5

3858758129 ).

number field of degree 9 Let K be the number field Q [ρ], where ρ satisfies
ρ9−30ρ8 + 291ρ7−835ρ6−573ρ5−2661ρ4 + 5256ρ3 + 3435ρ2 + 90ρ−10394.
It has discriminant 26 · 315 · 53 · 4093.
The maximal order oK has a basis

(1, ρ, ρ2, ρ3, ρ4, ρ5, ρ6,

ω8 =
ρ2 + ρ3 + ρ4 + ρ5 + ρ6 + ρ7

2
, ω9 =(

192482556886936+63967537334938ρ+18683832251437ρ2+119111891060334ρ3+
172319480755568ρ4+19755909260520ρ5+155411992372966ρ6+62922522292402ρ7+ρ8

)
211316676965006

.
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number field of degree 12 Let K be the number field Q [ρ] where ρ satisfies
ρ12 − 2ρ11 + 4ρ10 − 8ρ9 + 13ρ8 + 53ρ7 + 120ρ6 − 100ρ5 + 168ρ4 − 46ρ3 −
12ρ2 + 14ρ+ 7 = 0. It has discriminant
5 · 7 · 101 · 137 · 2211914545643954724725365004821995731. The powers of ρ
form a basis of the maximal order oK.

number field of degree 18 Let K be the number field Q [ρ], where ρ satisfies
ρ18 + 103ρ17 + 5654ρ16 + 208051ρ15 + 5656080ρ14 + 118519143ρ13 +
1952386178ρ12 + 25254464067ρ11 + 253773392888ρ10 + 1934686349631ρ9 +
10684964678644ρ8 + 38972994689559ρ7 + 110317002224976ρ6 +
47679505774513ρ5 + 6617690323691ρ4 + 1913538554456ρ3 +
1118923004758ρ2 − 222202371528ρ+ 9309104652 = 0. The field has
discriminant
−24 · 310 · 712 · 536 · 400237 · 73783647915044072969714969939508258643.
The basis of the maximal order is not given explicitly here because it would
fill several pages.
This number field is also presented as a relative extension. In
subsection 6.3.1 it is labeled “3 over 6”.

number field of degree 25 Let K be the number field Q [ρ], where ρ satisfies
ρ25 − 10ρ23 + 16ρ22 + 108ρ21 − 15ρ20 − 790ρ19 + 1072ρ18 + 5124ρ17 −
5608ρ16 − 7984ρ15 − 758ρ14 + 93156ρ13 + 37420ρ12 − 240436ρ11 −
101240ρ10 + 182046ρ9 + 2012960ρ8 + 16972ρ7 − 2449224ρ6 − 3922137ρ5 +
1881886ρ4 + 21697150ρ3 + 18723708ρ2 + 25162760ρ− 6466833 = 0. The
field has discriminant
−220 ·3·1120 ·175 ·19·547·42302891926833049490184855470064552307173943.
Again the basis of the maximal order will not be given.
This number field is also presented as a relative extension. In
subsection 6.3.1 it is labeled “5 over 5”.

number field of degree 33 Let K be the number field Q [ρ], where ρ satisfies
ρ33 − 84ρ29 + 171ρ27 + 1347ρ25 + 3ρ24 − 6300ρ23 + 6ρ22 + 37565ρ21 +
210ρ20 − 166482ρ19 − 918ρ18 + 305595ρ17 − 4896ρ16 − 188758ρ15 +
22650ρ14 + 7323ρ13 − 31791ρ12 + 939ρ11 + 13872ρ10 − 290ρ9 + 687ρ8 −
1455ρ7 − 105ρ6 + 696ρ5 + 90ρ4 + 12ρ3 + 12ρ2 + 8 = 0. The basis of the
maximal order and the discriminant will not be given.
This number field is also presented as a relative extension. In
subsection 6.3.1 it is labeled “11 over 3”.

6.2.2 Ideal test sets

The ideals to compare the run times are chosen randomly from ideal test sets. The
ideal test sets contain ideals of a similar computational difficulty. They are produced
in a generalized process as follows.

We start with the list of all prime ideals over the 11 smallest prime numbers which
range from 2 to 37. This list of ideals is the first test set which is denoted as test
set 0. To produce the test set 1 each ideal of the test set 0 is multiplied with one
randomly chosen ideal of the test set 0. The test set 1 contains the same number of
ideals as the test set 0, and each factors into 2 prime ideals.

In the same way, the test set 2 is produced. Thus, it contains ideals which factor
into 4 prime ideals and so forth. This process yields test sets n, where n ∈ Z≥0,
each containing only ideals which factor in 2n prime ideals. A test set with even
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simpler ideals is called test set 0′. It contains the smallest 12 ideals from test set 0.
Usually, it contains prime ideals over 2, 3, 5, and 7.

The decomposition behaviour of the ideals in one test set is very similar. This is
not a problem for our purposes.

6.2.3 Number of repetitions per test set

For small examples the computation time is too small to be measured confidently.
Randomly chosen ideals from the same ideal test sets might differ in their compu-
tational difficulty. For both reasons the process of choosing 2 ideals from a given
test set randomly and measuring the computation time is repeated. Any computa-
tion time entry in the table always refers to the average computation time of those
repetitions.

The number of repetitions per test set is chosen such that the total running time
of a test series does not exceed a few minutes since longer computations tend to
fragment the memory, which slow down further computations. This may blur the
results of the test.

6.2.4 Computation times

The table contains two sorts of computation times, times for actual multiplications
(assuming that the necessary presentation of the ideals are already given) and times
for presentation transformations.

A complex multiplication method may either use the available presentations or
transform one or both presentations to apply other algorithms, whatever is faster.
The preferable complex multiplication method for each of the ideal test sets is given
in the computation time table by the typeface of the multiplication computation
times as follows:
boldface This is the least average computation time. The method belonging to

this value is to be preferred.
italic The method belonging to this value should not be used. Even if the necessary

presentation for another method is not given, it is worth it to transform the
presentation.

normal face The method belonging to this value should be used if the necessary pre-
sentations are available and the necessary presentations for a faster method
are not.

Blank spaces mean that the particular method was not included in the test run.
All times are given in milliseconds. A HP9000 series 700 computer with relidmark
124000 (see subsection 6.1) was used for the experiment.
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number field identified by its degree
number of the ideal test set

repetitions per ideal test set
time (in ms) for the time (in ms) for the transformation
multiplication type basis→ 2elt→ 2elt→ basis→

basis mixed four normal 2elt basis normal normal
3 0′ 1000 0.99 1.16 1.56 1.00 1.16 0.55 0.75 1.66
3 0 1000 1.22 1.04 1.65 0.49 0.80 1.94 13.26 1.80
3 1 500 1.36 1.28 2.16 4.46 1.20 3.02 13.20 2.78
3 2 200 2.90 2.55 4.35 21.60 1.50 3.10 11.95 4.15
3 3 100 5.6 4.0 7.7 55.8 4.5 2.4 12.7 13.6
3 4 100 10.9 7.7 16.8 80.9 5.8 3.7 20.4 31.4
3 5 100 18.4 14.1 28.4 157.1 9.5 4.0 40.9 104.2
3 6 50 35.6 26.6 54.8 345.6 19.0 6.2 85.4 231.4
3 7 50 81.2 60.2 125.0 1073.8 32.0 9.6 316.0 508.6
3 8 50 224.6 165.2 347.2 1705.0 71.6 19.2 1050.6 1686.2
3 9 20 741.5 511.0 1077.0 8.0 387.5 56.5 3010.0 2793.0
3 10 10 2450 1714 3485 19 640 182 1310 2234
3 11 10 9236 5945 12648 58 5287 684 24437 25307
6 0′ 1000 7.35 4.59 5.94 11.43 2.51 1.61 4.56 8.63
6 0 500 8.18 5.00 6.96 9.92 3.26 6.22 17.54 9.22
6 1 200 11.15 6.75 11.20 49.10 3.05 8.55 17.75 9.70
6 2 100 33 15.3 25.9 88.3 4.9 9.2 18.6 13.6
6 3 100 60.9 25.2 44.7 101.9 8.9 11.1 24.6 24.4
6 4 100 121.2 43.8 83.8 206.4 18.0 15.7 40.5 49.4
6 5 50 217.0 76.0 148.6 270.6 31.0 21.0 61.2 90.2
6 6 20 420.0 144.0 283.0 414.5 73.5 36.0 600.0 190.0
6 7 10 983 331 660 645 131 65 204 378
6 8 10 2546 882 1755 9 432 142 2469 1302
6 9 10 8107 2727 5408 22 859 411 10319 1829
6 10 10 26005 9037 17472 43 3582 1352 2112 5266
9 0′ 200 23.90 15.05 16.35 100.60 11.50 3.30 14.90 29.80
9 0 200 27.15 18.45 24.75 225.35 7.30 13.55 33.05 26.75
9 1 100 35.6 22.6 32.1 909.5 14.3 13.4 33.6 36.1
9 2 50 53.6 27.6 37.6 1226.8 18.8 10.0 28.2 54.6
9 3 50 160.4 52.0 83.6 1341.8 60.2 16.4 34.0 86.0
9 4 20 254.5 76.0 126.5 2150.0 126.0 22.5 248.0 408.0
9 5 20 486.5 130.5 232.0 232.5 211.5 35.5 92.5 1217.0
9 6 10 929 233 428 223 1044 56 151 651
9 7 10 2029 493 913 182 923 112 592 1576
9 8 10 5151 1225 2298 11 2378 248 726 308315
12 0′ 100 48.9 12.3 16.5 6.6 9.9 5.3 2.9 20.9
12 0 100 53.0 12.3 19.4 60.0 8.1 7.3 11.0 19.8
12 1 100 71.5 20.3 42.8 514.4 10.8 18.4 22.9 26.4
12 2 50 239.6 52.8 111.8 315.4 17.0 20.4 28.0 38.0
12 3 20 476.5 95.5 191.0 740.0 51.0 32.5 63.0 91.0
12 4 20 1078.5 197.5 373.5 7268.5 126.5 60.5 145.5 283.0
12 5 10 2149 375 715 16711 368 100 258 660
12 6 10 4046 695 1325 6712 621 173 557 1181
12 7 10 8696 1542 2821 4724 1161 337 1070 2710
12 8 5 24518 4184 7606 18946 3038 780 3694 4530



6.2. COMPARISON OF ABSOLUTE MULTIPLICATION ALGORITHMS 95

number field identified by its degree
number of the ideal test set

repetitions per ideal test set
time (in ms) for the time (in ms) for the transformation
multiplication type basis→ 2elt→ 2elt→ basis→

basis mixed four normal 2elt basis normal normal
18 0′ 100 162.0 154.2 82.6 351.9 27.9 16.4 48.7 76.0
18 0 50 194.8 157.6 87.2 260.0 28.0 18.8 42.0 81.8
18 1 20 282.5 171.5 132.0 1341.5 36.5 26.0 70.0 96.5
18 2 20 582.5 219.0 223.0 1779.5 58.0 34.5 70.0 128.5
18 3 20 1655.5 382.0 472.0 3495.5 125.0 73.0 132.5 265.0
18 4 10 2557 530 670 5629 322 136 156 430
18 5 5 4748 836 1170 70086 730 214 268 1482
18 6 5 7794 1216 1838 1760 4078 322 602 10216
18 7 5 19438 2742 4500 40 5548 734 1306 2642
18 8 5 47632 6364 10732 68 6782 1366 4432 5482
25 0′ 100 499.9 520.6 147.7 301.3 116.2 32.6 35.5 184.7
25 0 50 595.6 526.4 164.8 372.0 67.2 36.2 37.2 158.8
25 1 20 837.0 560.5 245.0 1302.5 134.5 61.5 103.0 266.0
25 2 20 2006.0 672.5 486.0 9155.5 125.0 72.5 164.0 343.5
25 3 10 4854 996 1032 40245 262 105 229 478
25 4 5 8064 1382 1524 106222 1014 250 638 2072
25 5 10 14716 2236 2597 4409 524
25 6 5 27442 3512 4698 5540 800
33 0′ 50 2191.6 1549.2 459.6 3586 260 85.4 498.2 1887.4
33 0 20 2293.5 1560 348.5 1716 305 74 160 1987
33 1 10 3072 2005 1242 134462 283 251 1549 2081
33 2 5 6854 2378 1838 353198 366 300 2050 2218
33 3 10 16426 3281 2968 980 432
33 4 10 27442 5673 4366 6612 981
33 5 5 50616 7658 7714 4146 1476

Discussion

The following heuristic rules for ideal multiplication strategies can be drawn from
the table.
• For number fields of degree up to about 15 the mixed presentation method

is usually best. If the necessary presentations are not available, it is worth it
to compute a presentation, usually. The four multiplication method should
be avoided.

• In number fields from about degree 15 on, the four multiplication method is
best for smaller ideals and the mixed multiplication for larger ideals. If the
necessary presentations are not available it is worth computing the presen-
tations since the basis→2elt and 2elt→basis are relatively fast.

• For small number fields and small ideals the transformations are expensive
and the differences between the basis, mixed, and four multiplication are
small. The multiplication should be done with the available transformations.

• Normal multiplication should not be used as a general method for multipli-
cation. It is occasionally very fast but usually much slower than the other
methods.
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– The very fast computation times for the test ideal sets of around 8 have
the following explanation. The ideal test sets contain only ideals whose
minimum is a power product of prime numbers up to 37. A product of
256 prime ideals (referring to test set number 8) is very likely to have
all those prime numbers dividing its minimum. If ideal a of this test set
is given in normal presentation, it is actually P–normal, where P is the
set of the prime numbers dividing the minimum of a.
The normal multiplication has the two difficult problems of finding
normal presentations and making the normal presentation of two ideals
compatible. After this, the actual multiplication is very cheap. Normal
presentations of ideals in ideal test set 8 are very likely to be compatible
already. Therefore the small computation time is more or less an artifact
of the way the ideal test sets are produced.

– The small time for the actual multiplication is leveled off by the large
time to produce the normal presentation.

– There is one exception to the previous statement: the order of degree 6,
ideal test set 10. In this case the normal multiplication is the fastest
no matter in which presentation the ideals are given. Under similar cir-
cumstances a single normal multiplication is usually quite fast compared
with the other multiplication methods. But for some ideals it is very
hard to find a normal presentation resulting in an enormous computa-
tion time which raises the average time considerably. (This happened
in the case of the order of degree 6, ideal test set 9, the time for the
transformation 2elt→normal.)

– In some rows of the table the time for the transformation basis→normal
is larger than the time for the transformations basis→2elt and 2elt →
normal combined. Obviously, the transformation basis→normal can be
replaced by the transformations basis→2elt and 2elt→normal. The im-
plemented algorithms to compute 2elt and normal presentations include
random choices. In this case the effect of lucky/unlucky choices on the
computation time is very strong since it is expensive to check if the ele-
ments in question indeed generate the ideal/are in normal presentation.
The trouble is that it can not be determined in advance which is faster:
basis→normal or basis→2elt and 2elt→normal combined.

6.3 Comparison of different normal form algorithms with
reduction using relative ideal arithmetic

Aim

To compare the computation times for the different normal form algorithms imple-
mented in KANT on pseudomatrices with good reducers known in advance (like in
relative ideal arithmetic).

Design

The overwhelming part of the computation costs of relative ideal arithmetic are
consumed by the normal form computation. Thus, the time for the relative ideal
multiplication instead of the normal form computation time is used, for convenience.
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The actual modules fed into the normal form algorithm result from the basis multi-
plication algorithm (marked as test operation *) and of the basis addition (marked
as test operation +), described in section 5.3.

Let n be the relative degree of the relative extension. The pseudomatrix whose
CHNF is to be computed, for
• addition, has dimension n× 2n and is very sparse, n(n− 1) entries are zero,

since it is the concatenation of two matrices already in CHNF;
• multiplication, has dimension n×n2 and is very dense since its columns are

representations of products of algebraic numbers. Depending on the size of
entries of the multiplication table for the order, its entries can be large even
if the ideals are relatively small.

Compared methods

The following methods were compared and tabulated using the given abbreviations.
C1 Cohen algorithm (algorithm 4.5.1) with a one–ideal reducer (see subsection

4.8.2).
B1 Bosma–Pohst algorithm (algorithm 4.5.3) with a one–ideal reducer (see sub-

section 4.8.2).
C Cohen algorithm (algorithm 4.5.1) without reduction
B Bosma–Pohst algorithm without reduction
Cg Cohen algorithm (algorithm 4.5.1) with a general diagonal reducer (see sub-

section 4.8.2).
Cr Cohen algorithm (algorithm 4.5.1) with a rational reducer (see subsection

4.8.2).

6.3.1 Example relative number fields

The general situation is as follows:

Let K = Q [ρ] be an algebraic number field, where ρ satisfies a certain integral
polynomial equation with rational coefficients of degree n. Let Ω = (ω1, . . . , ωm) be
a Z–basis of the maximal order oK of the number field L.
Let L = K[σ] be an algebraic number field extension of K, where σ satisfies a certain
polynomial equation of degree m with coefficients in K. The maximal order oL of L
does not always have a K–basis, but at least a K–pseudobasis oL = c1ξ1+· · ·+cmξm,
where ci is a fractional D–ideal and ξ ∈ L for i ∈ Nm. The ξi can be expressed in the
powers of σ. oL also has a Z–basis of degree nm. This is the corresponding absolute
extension.

In the examples, the relative orders used are tabulated by the degrees n and m as
m over n, for each degree combination, only one number field tower is used.
relative number field of degree 3 over 3 Let K be the number field Q [ρ],

where ρ satisfies ρ3 − 10ρ2 − 3ρ− 2 = 0. It has discriminant −8180 and
class number 2. The powers of ρ form a basis of the maximal order oK.
Let L be the number field K[σ], where σ satisfies σ3 − 3 = 0. It has the
relative discriminant 243oK. The powers of σ form a basis of the maximal
order oL.
The absolute representation of this number field can be found in
subsection 6.2.1 as the number field of degree 9.
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relative number field of degree 3 over 6 Let K be the number field Q [ρ],
where ρ satisfies ρ6 + 5ρ5 − 6ρ4 − 53ρ3 + 3ρ2 + 206ρ+ 244 = 0. It has
discriminant −182099043 and class number 18. A basis of oK is
(1, ρ, ρ2, ρ3, ω5 = ρ4+ρ

2 , ω6 = ρ5+596ρ4+140ρ3+487ρ2+120ρ+1256
2740 ).

Let L be the number field K[σ], where σ satisfies
σ3 + (18 + ρ)σ2 + (13 + 6ρ+ 34ρ2 + ρ3)σ + 51 + 25ρ+ ρ2 = 0. It has the
relative discriminant (−460552395 + 207692333ρ− 184201393ρ2 −
58798978ρ3 − 461579366ω5 + 1056396040ω6)oK. The powers of σ form a
basis of the maximal order oL.

relative number field of degree 6 over 3 Let K be as in the number field
denoted with 3 over 3. Let L be the number field K[σ], where σ satisfies
σ6 + (1 + ρ)σ5 + (−1 + 2ρ− 4ρ2)σ4 + (5− 5ρ− 11ρ2)σ3 + (1 + 3ρ2)σ2 +
(1 + ρ− 3ρ2)σ + (−ρ− ρ2) = 0. It has the relative discriminant
(319743143192792 + 1351078531895460ρ− 134055393145420ρ2)oK.
The maximal order oL has no basis in this case but a pseudobasis:
oL = oK + σoK + σ2oK + σ3oK + σ4oK + (σ + σ2 + σ4 + σ5)(oK + ρ+ρ2

2 oK).
The absolute representation of this number field can be found in
subsection 6.2.1 as the number field of degree 18.

relative number field of degree 5 over 5 Let K be the number field Q [ρ],
where ρ satisfies ρ5 + ρ4 − 4ρ3 − 14ρ2 + 3ρ+ 1 = 0. It has discriminant
−3982352 and class number 5. A basis of oK is
(1, ρ, ρ2, ω4 = ρ3−ρ2−ρ−1

2 , ω5 = ρ4+1
2 ).

Let L be the number field K[σ], where σ satisfies
x5 − 2σ3 + (2 + ρ− ω5)σ2 + (13 + 6ρ+ ρ2)σ + (25 + ρ− 2ρ2 − ω5) = 0. It
has the relative discriminant
(859894333+788062556ρ−3775373724ρ2+405937120ω4+1052770984ω5])oK.
The powers of σ form a basis of the maximal order oL.
The absolute representation of this number field can be found in
subsection 6.2.1 as the number field of degree 25.

relative number field of degree 11 over 3 Let K be the number field Q [ρ],
where ρ satisfies ρ3 + 42ρ+ 154 = 0. It has discriminant −936684 and class
number 27. The powers of ρ form a basis of the maximal order oK.
Let L be the number field K[σ], where σ satisfies
σ11 + (−ρ+ ρ2)σ7 + (1− 2ρ2)σ5 + σ3 + (1 + ρ)σ2 + 2 = 0. It has the
relative discriminant (−5026607178781425437532995371220−
2214443634236656662286177134952ρ−
181441187670086041490986084120ρ2)oK.
The maximal order oL has no basis in this case but only a pseudobasis:
oL = oK + σoK + σ2oK + σ3oK + σ4oK + σ5oK + σ6oK + σ7oK + σ8oK +

σ9oK + (σ + σ2 + σ4 + σ10)(oK + ρ2

2 oK).
The absolute representation of this number field can be found in
subsection 6.2.1 as the number field of degree 33.

6.3.2 Ideal test sets

The ideal test sets are generated in analogy to the sets for absolute ideals in sub-
section 6.2.2.

Again 0 refers to prime ideals over small prime numbers (viewed as absolute ideals).
1 refers to products of 2 prime ideals, 2 to products of 4 prime ideals and so on.
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As described in 6.2.3 two ideals are chosen randomly from the ideal test set a certain
number of times (entered in a separate column). The average of the computation
times of all repetitions is used for the particular method.

6.3.3 Relative times

To improve the clarity of the table it does not contain the computation times for
each of the methods directly but as factors in relation to the fastest method. The
fastest method can be identified as the column with the relative time 1. The actual
time (in milliseconds) of the fastest method is entered in a separate column.

Note that in these test different computers were used. Thus, the computation time
of the fastest method must be seen in relation to the speed of the computer (column
marked relidmark, see subsection 6.1).

If no factor is entered in the table the particular method was excluded from the test
run, for two possible reasons:

• Methods likely to be very slow were excluded, such that either a complete
test run was possible at all, or such more repetitions were possible to increase
the reliability of the result.

• Method “Cg” was occasionally excluded because of its high correlation to the
“C1” method.

Note that on several occasions two test runs have been performed for the same
ideal test set. The first run included all methods, with only a small repetition count
possible. The second run excluded the slower methods to obtain a higher repetition
number.

base field degree
relative degree

ideal test set
test operation

time of the fastest method for this example (in ms)
relidmark of the computer used, *1000

repetition count
time in relation to the fastest method
C1 B1 C B Cg Cr

3 3 0 + 7.7 74 400 6.03 11.93 4.59 5.31 4.85 1
3 3 1 + 18.0 74 400 2.97 5.82 2.36 2.85 2.62 1
3 3 2 + 49.1 74 400 1.60 2.01 1 1.18 1.71 1.08
3 3 3 + 129.0 74 400 1.68 2.41 1 1.11 2.19 1.4
3 3 4 + 270.3 74 400 1.67 3.18 1 2.21 2.38 1.54
3 3 5 + 589.6 74 400 1.72 16.80 1 10.38 2.57 1.53
3 3 6 + 393.8 234 211 2 15.71 1 9.21 2.89 1.73
3 3 0 * 121 74 400 1.78 1.84 1.68 1 2.04 2.01
3 3 1 * 276.2 74 400 1.35 1.41 1.64 1 1.67 1.57
3 3 2 * 839.4 74 400 1 1.47 1.48 1.34 1.43 1.06
3 3 3 * 522.5 234 400 1.07 4.54 1.79 3.46 1.52 1
3 3 4 * 943.1 234 267 1.19 9.53 2.08 6.8 1.73 1
3 3 5 * 1722 234 129 1.15 12.11 2.39 8.44 1.69 1
3 3 6 * 4232 234 66 1.11 6.82 2.91 8.6 1.63 1



100 CHAPTER 6. EXAMPLES

base field degree
relative degree

ideal test set
test operation

time of the fastest method for this example (in ms)
relidmark of the computer used, *1000

repetition count
time in relation to the fastest method
C1 B1 C B Cg Cr

6 3 0 + 18.8 100 400 10.42 16.68 5.99 10.95 6.8 1
6 3 1 + 62.9 100 400 4.39 6.77 2.41 9.36 3 1
6 3 2 + 445 100 400 1.69 2.5 1 6.52 1.71 1.01
6 3 3 + 765.4 230 113 1.46 3.4 1 10.84 2.29 1.25
6 3 0 * 2152 100 203 1 2.06 4.19 9.15 1.29 1.54
6 3 1 * 4786 104 87 1 2.6 6.54 10.43 1.5 1.49
6 3 2 * 7662 104 21 1 4.37 12.67 13.01 1.41 1.34
6 3 3 * 11638 230 100 1 7.55 8.34 20.3 1.42 1.06
3 6 0 + 14.4 110 400 6.52 25.08 6.81 11.8 6.47 1
3 6 1 + 100.8 110 400 1.64 3.54 1.13 2.48 1.76 1
3 6 2 + 342.9 110 400 1.73 2.68 1 2.36 2.18 1.06
3 6 0 * 1258 110 25 1 1.65 469 2.63 1.67 1.24
3 6 1 * 2511 221 18 1.2 1.12 225 2.08 2.04 1
3 6 2 * 4287 230 10 1.13 1.85 545 26.8 2.71 1
3 6 2 * 5044 100 96 1.24 3.2 2.51 1
5 5 0 + 13.6 124 400 7.55 27.8 8.49 16.0 6.42 1
5 5 1 + 68.8 124 400 2.69 8.31 2.54 6.17 2.43 1
5 5 2 + 369.9 124 246 1.39 3.47 1.04 25.8 1.63 1
5 5 3 + 582 221 24 1.39 35.5 1 54.7 2.46 1.23
5 5 0 * 1854 124 5 1 8.44 844 55.3 1.51 1.63
5 5 0 * 4056 124 273 1 3.82 1.39 1.14
5 5 1 * 4560 230 7 1 11.8 967 370 2.33 1.24
5 5 1 * 8118 230 171 1.11 4.67 1
5 5 2 * 7695 230 2 1 44.6 2868 880 2.81 1.21
5 5 2 * 6783 230 20 1.02 33.8 1
5 5 3 * 10488 230 6 1 97.0 1.18
3 11 0 + 32.5 200 400 5.25 28.0 5.8 15.75 5.42 1
3 11 1 + 823.4 200 170 2.06 3.51 1.16 2.8 2.7 1
3 11 2 + 539.6 200 23 2.05 49.4 1 6.03 3.24 1.2
3 11 0 * 14856 200 13 1.27 1.24 7.39 2.15 1
3 11 1 * 22091 200 17 1 4.38 2.35 1.12
3 11 2 * 70649 234 51 1 15.8 2.60 1.14
3 11 3 * 35730 230 1 1 1742 3.57 3.07

Discussion

• Method C1 wins for multiplication of large ideals and large orders. It is
relatively fast in all test so it might be used as a general method for CHNF
computation. The worst factors for this method appear for the addition of
small ideals. This is due to the obvious fact that reduction is not worthwile
if the pseudomatrix is sparse and has entries of small absolute value.
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• Method B1 is always slower than C1 (with the exception of one test run, but
with an insignificant difference). Therefore the Bosma–Pohst algorithm is
not particularly suited for reduction, although, for large examples, it is better
than the Bosma–Pohst algorithm without reduction.

• Method Cr wins for addition of small ideals for all orders. This is partly due
to the fact that one is detected as a reducer and can be used efficiently. It
also wins for multiplications of small ideals and small orders, in particular if
the base field is large and the relative degree is small. These results can be
explained by the fact that Cr includes a cheap reduction, which might not
be as effective as the reduction in C1.

• Method C wins the addition of larger ideals. Reduction seems not be effective
if the pseudomatrix has not many columns but the reducer is very large. This
might be due to the fact that the Cohen algorithm can use the sparsity of
the example pseudomatrices efficiently.

• Method B wins multiplication of small ideals for small orders. It is particu-
larly effective if the base field is simple.

• Method Cg has a high correlation to C1 and slower in most cases, which is
not surprising from the algorithm.

All entries of one row of the table is taken from one KANT–session. If the examples
are large, the whole session required up to several hours. If this is the case, strange
things might happen (see the example order degrees 5 over 5, ideal test set 1,
operation *). The first run included all methods and only 7 repetitions were possible.
In the second run methods C, B, and Cg were excluded to obtain 171 repetitions.
The interesting point is that method C1 is relatively slower than in the first run,
and method Cr is faster. The explanation could be as follows.

Large computations tend to fragment the memory. If much memory is consumed
and the memory is fragmented, the allocation of new memory is much more difficult.
This promotes implementations which do not allocate memory as frequently. This
seems to be the case here: method C1 is more affected by the fragmented memory
than method Cr.

Since the comparison of algorithms, not implementations, are intended this effect
blurs the result. Thus, the strength of this effect shows the limitations of the ap-
proach to compare algorithms with actual implementations.

6.4 Comparison of different normal form algorithms
without reducers known in advance

Aim

To compare the different normal form algorithm implemented in KANT for pseu-
domatrices, where reducers are not known, as opposed to the previous section. The
results will form a basis for heuristics for the question of which of the algorithms is
best to apply in different situations.

Design

Compared methods

The following methods were compared and tabulated using the abbreviations given:
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C Cohen algorithm (algorithm 4.5.1) without reduction,
B Bosma–Pohst algorithm (algorithm 4.5.3) without a reduction,
C1 Cohen algorithm (algorithm 4.5.1) with a one ideal reducer (see subsection

4.8.2) obtained with the method of corollary 4.8.5,
B1 Bosma–Pohst algorithm (algorithm 4.5.3) with a one ideal reducer (see sub-

section 4.8.2) obtained with the method of corollary 4.8.5,
Cr Cohen algorithm (algorithm 4.5.1) with a rational reducer (see subsection

4.8.2) obtained with the method of corollary 4.8.5,
Br Bosma–Pohst algorithm (algorithm 4.5.3) with a rational reducer (see sub-

section 4.8.2) obtained with the method of corollary 4.8.5.
r For information, the last column of the table contains the time necessary for the

preparation of the reducer obtained with the method of corollary 4.8.5.

6.4.1 Randomly generated pseudomatrices

Starting from algebraic number fields in absolute presentation of degree 2, 3, 5, and
10, relative extensions with a relative degree of 2, 3, 5, and 10 are defined over each
of the four base fields to produce an array of 16 relative number fields.

The base fields have the property that

• the generating polynomial has coefficients with small absolute value;
• the order generated by the polynomial is the maximal order of the number

field;
• the class group is nontrivial.

Further details of the fields will not be given here, they will be described in [Hop].

The relative extensions are produced with random polynomials which

• are relatively sparse, about half of the coefficients are zero;
• have coefficients of the base field with a representation of integers with rel-

atively small absolute values.

The relative degree corresponds to the number of rows of the final example pseu-
domatrix which is recorded in the table.

For each relative order an ideal A is chosen such that A∩Z is either 2Z or 64777Z.
In the table this is indicated as “ideals over 2” or “ideals over 64777”. Using the
pseudobasis

M =

[
a1 . . . an
A1 . . . An

]
for each of the ideals, 2n random elements ai ∈ ai, for i ∈ Nn, are chosen ran-
domly to produce 2n elements of Mod (M). The pseudomatrix N formed by these
elements together with trivial ideals is the example pseudomatrix. N is very likely
to be equivalent to M. This pseudomatrix has obviously a very good reducer, the
minimum of the ideal A, but it will not be used in this test.

The table contains relative times, described in subsection 6.3.3.
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base field degree
pseudomatrix dimension

ideal over
time of the fastest method for this example (in ms)

relidmark of the computer used, *1000
time in relation to the fastest method
C B C1 B1 Cr Br r

2 2×4 2 8 190 2.38 1 10.5 10 10.5 9.5 8
2 2×4 64777 16 210 1 1.31 6.69 7.44 5.88 7.25 4.25
3 2×4 2 27 190 2.56 1 4.81 4.78 5.04 4.48 4.04
3 2×4 64777 11 210 3.73 1 9.45 9.82 11.09 9.55 7.82
5 2×4 2 27 190 3.96 1 8.67 9.22 10.37 8.89 8
5 2×4 64777 32 210 9.06 1 8.56 8.69 10.19 8.06 6.5
10 2×4 2 590 190 15.61 1 10.31 10.36 11.29 10.34 10.03
10 2×4 64777 6822 187 2.17 1 1.69 1.35 1.68 1.32 1.08
2 3×6 2 22 190 2.27 1 6.59 5.36 5.68 5.09 4
2 3×6 64777 22 210 3.05 1 9.14 7.05 7.5 6.64 4.59
3 3×6 2 162 190 1.13 1 1.3 1.15 1.25 1.11 0.93
3 3×6 64777 28 210 9.21 1 5.96 6.29 7.14 6.25 4.64
5 3×6 2 148 190 18.13 1 3.22 3.24 3.54 3.11 2.64
5 3×6 64777 124 210 3.89 1 4.03 4.23 4.32 3.84 2.61
10 3×6 2 12430 190 18.57 49.19 1.06 1 1.16 1.02 0.94
10 3×6 64777 13810 187 4.79 1.85 1.42 3.62 1 2.15 0.59
2 5×10 2 43 190 7.56 1 4.98 4.95 4.72 4.77 3.77
2 5×10 64777 43 210 4 1 7.49 6.91 6.51 6.3 3.88
3 5×10 2 413 190 322.31 1.05 1.04 1.06 1.16 1 0.68
3 5×10 64777 420 210 25.24 1 1.67 2.38 1.64 1.79 0.64
5 5×10 2 890 190 2794.46 1.89 1 1.13 1.06 1.07 0.8
5 5×10 64777 1220 237 20125.44 1 8.7 5.11 8.6 0.65
10 5×10 2 18610 190 6.85 1 1 1.25 1.13 0.92
10 5×10 64777 42170 237 2.66 1 2.57 2.69 1.7 0.55
2 10×20 2 1180 190 1.14 1 1.07 1.01 1.72 0.53
2 10×20 64777 980 210 1 1.17 1.77 27.93 2.4 0.59
3 10×20 2 1970 190 105.59 1 1.27 1.2 1.94 0.59
3 10×20 64777 2990 160 37.15 1 2.57 118 3.68 0.56
5 10×20 2 5840 190 20.95 1.01 1.27 1 1.29 0.8
5 10×20 64777 13680 160 12.07 1 4.43 171.1 4.02 0.68
10 10×20 2 50160 190 1 1.21 1176.52 4.19 0.8
10 10×20 64777 86460 210 1 36.5 18.74 0.35

Discussion

A considerable part (half to almost all, with the exception of one case) of the com-
putation time of the methods which use a reducer is consumed by the computation
of the reducer.

Two methods share the smallest computation times: the Bosma–Pohst algorithm
without reduction and the Cohen algorithm with reduction using an ideal as a
reducer.
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If the dimension of the pseudoamtrix is small the Bosma–Pohst algorithm with-
out reduction is fastest. If the dimension of the pseudoamtrix is large the Cohen
algorithm using reduction is fastest.

For medium dimensions (5×10) the size of the base field is important. For smaller
base fields the Bosma–Pohst algorithm without reduction is faster, for larger base
fields the Cohen algorithm with reduction is faster.

6.5 On the importance of absolute ideal multiplications in
the relative normal form computations

Aim

This test demonstrates the importance of the efficiency of the multiplication of
absolute ideals for the efficiency of the CHNF.

Design

The results of the profiling options of the GNU–C compiler are used. The profile
contains the accumulated time for all absolute ideal multiplications and the total
time for a CHNF–application.

The multiplication of relative ideals (given as pseudomatrices) involves the creation
of a large pseudomatrix. The CHNF computation of this pseudomatrix forms the
actual example pseudomatrix for this test.

Use some relative ideals in relative orders already used in the test in section 6.3.1.

Example 1

Use the relative number field of subsection 6.3.1 identified by the degrees 11 over 3.

a1 = 14911oK+((−5604−2114ρ−13622ρ2)+(−5882+4444ρ+5883ρ2)σ+(−13010−
9472ρ−12973ρ2)σ2 +(−6978+6600ρ−11612ρ2)σ3 +(4038+7534ρ+12453ρ2)σ4 +
(7552 + 11432ρ − 9802ρ2)σ5 + (2078 + 8988ρ + 11884ρ2)σ6 + (13834 + 6258ρ −
2750ρ2)σ7 + (7218− 1806ρ+ 13108ρ2)σ8 + (−12502− 4584ρ− 322ρ2)σ9 + (−6330−
10558ρ− 321ρ2)ξ)/2oK

a2 = 101269oK + ((10419 − 27252ρ − 25219ρ2) + (4246 + 33055ρ + 21907ρ2)σ +
(−48621−14073ρ−5214ρ2)σ2 +(35102+20495ρ+9289ρ2)σ3 +(−15012+14703ρ+
36679ρ2)σ4 + (36843 + 12524ρ + 21543ρ2)σ5 + (45036 + 37594ρ − 2870ρ2)σ6 +
(2711+19750ρ−40548ρ2)σ7 +(47920−35796ρ+34136ρ2)σ8 +(−27599+32510ρ−
15622ρ2)σ9 + (16609 + 42785ρ+ 1365ρ2)ξ)/2oK

The total relative ideal multiplication uses 38.27s. 6707 absolute ideal multiplica-
tions used 27.16s. This is a share of 71%.
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Example 2

Use the relative number field of subsection 6.3.1 identified by the degrees 5 over 5.

a1 = 5865oK + ((−353 − 2463ρ + 854ρ2 + 1236ρ3 + 2555ω) + (−1813 − 2250ρ +
2381ρ2 − 2722ρ3 − 1222ω)σ+ (303 + 2181ρ+ 745ρ2 + 2560ρ3 − 2135ω)σ2 + (2496−
1598ρ−2679ρ2 +833ρ3 +1997ω)σ3 +(2438+2904ρ−1249ρ2 +2553ρ3−2611ω)σ4)oK

a2 = 1615oK+((434−497ρ−387ρ2 +430ρ3−255ω)+(155−125ρ+442ρ2 +450ρ3−
638ω)σ+ (−429 + 328ρ− 133ρ2 − 365ρ3 + 122ω)σ2 + (93 + 710ρ+ 728ρ2 − 425ρ3 +
245ω)σ3 + (−384 + 118ρ− 377ρ2 + 726ρ3 − 474ω)σ4)oK

The total relative ideal multiplication uses 11.87s. 645 absolute ideal multiplications
used 9.25s. This is a share of 78%.

Discussion

These results clearly stress the importance of the absolute ideal multiplication al-
gorithms. Since an important aim of this work is to improve the efficiency of the
normal form algorithm, the results motivate the efforts for the absolute ideal arith-
metic.

6.6 Comparison of the two phases in the reduced normal
form algorithm

Aim

On page 75 the two–phases–method was introduced. This test compares the running
time of each of the two phases. It was mentioned that the second phase is not too
expensive. This test serves as an argument to this opinion.

Design of the test

The relative number fields of subsection 6.3.1, the ideal test set, described in sub-
section 6.3.2, and the random pseudomatrices of subsection 6.4.1.

A pseudomatrix generated by this method features a good reducer: the minimum
of the relative ideal (see section 5.4).

An experimental version of KASH was used which has the option of only executing
the first phase of a normal form computation.

All computation times (in milliseconds) are the result of a single execution of the
standard CHNF–algorithm on a HP900 series 700 computer with 124000 relidmark,
see subsection 6.1.
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base field degree
relative degree

relative ideal test set
time of the first phase total time percentage

3 3 0 70 90 78
3 3 1 80 90 89
3 3 2 190 210 90
3 3 3 310 360 86
3 3 4 440 540 81
3 3 5 650 770 84
3 3 6 1180 1420 83
3 3 7 1750 2190 80
3 3 8 5230 6480 81
6 3 0 250 300 83
6 3 1 240 290 83
6 3 2 420 560 75
5 5 0 510 570 89
5 5 1 740 880 84
5 5 2 1310 1620 81
3 6 0 210 250 84
3 6 1 260 310 84
3 6 2 410 490 84
3 11 0 320 460 70
3 11 1 7400 10310 72
3 11 2 3080 3610 85

6.7 Comparison of the different multiplication algorithms
for relative ideals

Aim

This test is very similar to the comparisons of the different absolute ideal multipli-
cation algorithms in subsection 6.2, with relative in place of absolute.

The answer will give heuristics for the question how to use the different multipli-
cation algorithms to increase the overall time efficiency of the multiplication for
relative ideals.

Design of the test

The design of this test is identical to the comparison of the absolute ideal multipli-
cation in section 6.2 with the following exceptions:

• Normal presentations and normal multiplications are not used. These algo-
rithms are not yet implemented in KANT.

• The relative orders of subsection 6.3.1 are used. The ideal test sets are pro-
duced with the method described in subsection 6.3.2.
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base field degree
relative degree

number of the ideal test set
repetitions per ideal test set

speed of the computer in 1000*relidmark
time (in ms) for

multiplication of type transformation
basis mixed four basis→2elt 2elt→basis

3 3 0′ 100 78 145.8 81.7 94.6 18.9 68.8
3 3 0 100 78 189.6 114 163.4 22.5 80.4
3 3 1 100 78 416.9 260.4 365.8 29.4 179.8
3 3 2 50 78 731.6 469.6 612.8 32.2 269.8
3 3 3 50 78 1420 980.2 1307.6 46.6 403.2
3 3 4 20 78 2430.5 1647 2261 64 572.5
3 3 5 20 78 3969 2796.5 4112.5 106.5 1116
3 3 6 10 78 9204 6440 9538 182 2436
3 3 7 10 78 14332 10857 16969 300 4354
3 3 8 10 78 43961 30480 53723 613 11926
6 3 0′ 50 186 433.8 199.2 219.6 48.6 308.2
6 3 0 50 186 497.8 280.8 349.4 58.2 361.2
6 3 1 50 186 887.6 522 657.8 68.8 558.4
6 3 2 50 186 2051 1261 1661.4 91.8 846.8
6 3 3 50 190 4443 3010.4 4429.8 117.6 2277.4
6 3 4 20 190 10779 7328 10882 292 4398.5
6 3 5 20 190 23529 15824 24038 723.5 7236
5 5 0′ 50 186 2249.4 824.6 1219.8 700.4 733.4
5 5 0 50 186 3322.8 2028.4 2856.6 1148.8 1475
5 5 1 20 186 5259.5 3009 3629 466.5 1840
5 5 2 20 186 7096.5 2888 4348.5 217 1618
5 5 3 20 190 16878 6666.5 10080.5 321.5 4549
5 5 4 20 190 33915.5 12932 23740.5 398.5 8808
3 6 0′ 100 186 786.1 209.9 308.4 69.7 156
3 6 0 100 186 1762.6 444.7 629.2 136.1 279.2
3 6 1 20 186 2186.5 649 926.5 105 439.5
3 6 2 20 186 3119.5 1002 1265.5 119 570
3 6 3 10 190 8231 2614 3695 223 1439
3 6 4 10 190 12819 4292 6120 206 1790
3 6 5 10 190 27112 8923 14338 372 3696
3 6 6 10 190 62876 20206 29037 989 8313
3 11 0′ 50 186 8403.6 1449.8 2104 895.2 1157.8
3 11 0 20 186 11053 1838.5 2744.5 1073 1097.5
3 11 1 20 186 24323.5 6008 6557 1785 2958.5
3 11 2 10 186 33079 13080 8237 1960 4090
3 11 3 10 190 85828 19537 21860 3766 9327

Discussion

The table shows that the mixed presentation method is quite superior. But subse-
quent tests drew another picture:
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• There are huge run time differences for the mixed multiplication algorithm
for all of the tested relative orders except for the order 3 over 3. For the order
3 over 6 they differ by a factor of 200, for the order 6 over 3 by a factor 4000,
and for the order 5 over 5 by a factor of 5000. Some ideal multiplications in
order 11 over 3 could not be finished which guarantees a factor of at least
1000000.

• The run time differences are the result of ill–behaved two–element presenta-
tions. Ideals with well–behaved two element presentations can efficiently be
multiplied with any ideal given in basis presentation.

• The randomly chosen ideals in the above table seemed to have missed the
extremely ill–behaved two–element presentations in most cases. This appears
as a good average performance of the algorithm.

• Ill–behaved two–element presentations do not occur for absolute ideals.
Therefore they appear to be a property of relative presentations of algebraic
numbers.

• Ill–behaved two–element presentations also trouble the four generators mul-
tiplication algorithm.

6.8 Comparison of the efficiency of relative ideal
multiplication to absolute ideal multiplication

Aim

Which is faster, the relative or the absolute multiplication? How does it depend on
the size of the algebraic number field and the ideals? Is it therefore worth dealing
with relative extensions for the purpose of ideal multiplications?

Design

The 16 relative number fields introduced in subsection 6.4.1 are used and tabulated
as m over n, where m is the relative degree and n the degree of the base field.

For each relative order five ideals A are chosen such that A ∩ Z is 2Z, 14Z, 174Z,
1296Z, or 88642Z. The ideal is tabulated in the column “ideals over” with the
corresponding natural number.

Using the method of subsection 5.2.2, for each relative ideal a corresponding absolute
ideal is obtained.

The test compares the running times (“times for mult”) of the multiplication of two
ideals in relative representation (“rel”) and in absolute representation (“abs”). The
tabulated times are measured in milliseconds on the same computer, with 190000
relidmark. Transformation times from absolute to relative representations and vice–
versa are not considered. The last column contains the quotient of the time for the
relative multiplication by the time for the absolute multiplication.

For both relative and absolute multiplication only one algorithm is used (the one
which is the default for KANT computations). It is a combined algorithm using the
heuristics obtained from the tests in sections 6.2 and 6.7.

For the smaller examples, the table contains the average time of up to 10 multipli-
cations of randomly chosen ideals.
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base field degree
relative extension degree

ideals over
times for mult quotient

rel abs rel/ abs
2 2 2 14 1.0 13.5
2 2 21 26 1.5 17.1
2 2 455 35 1.8 18.8
2 2 60214 47 4.0 11.7
2 2 1125443 43 4.8 8.83
2 3 2 22 3.2 7.12
2 3 21 65 4.4 14.8
2 3 455 114 6 19.0
2 3 60214 174 20 8.52
2 3 1125443 106 26 3.97
2 5 2 143 15 9.2
2 5 21 281 21 13.2
2 5 455 470 36 12.9
2 5 60214 708 96 7.31
2 5 1125443 558 147 3.78
2 10 2 1183 170 6.93
2 10 21 4142 488 8.48
2 10 455 7653 720 10.6
2 10 60214 10133 1556 6.50
2 10 1125443 8533 2510 3.39
3 2 2 19 3.7 5.16
3 2 21 38 5 7.62
3 2 455 56 7.5 7.58
3 2 60214 99 23 4.29
3 2 1125443 115 30 3.77
3 3 2 57 13 4.38
3 3 21 81 15 5.2
3 3 455 121 30 4.06
3 3 60214 347 86 4
3 3 1125443 412 108 3.79
3 5 2 292 63 4.58
3 5 21 521 81 6.42
3 5 455 860 162 5.29
3 5 60214 1783 544 3.27
3 5 1125443 1770 667 2.65
3 10 2 2770 380 7.28
3 10 21 5560 650 8.55
3 10 455 10560 1350 7.82
3 10 60214 12770 4740 2.69
3 10 1125443 9530 4440 2.14

base field degree
relative extension degree

ideals over
times for mult quotient

rel abs rel/ abs
5 2 2 53 20 2.66
5 2 21 126 30 4.22
5 2 455 176 43 4.07
5 2 60214 270 116 2.31
5 2 1125443 390 173 2.25
5 3 2 330 80 4.12
5 3 21 350 150 2.33
5 3 455 370 200 1.85
5 3 60214 800 530 1.50
5 3 1125443 1520 730 2.08
5 5 2 220 450 0.488
5 5 21 1510 540 2.79
5 5 453 2510 760 3.30
5 5 60214 3070 2770 1.10
5 5 1125443 3750 3250 1.15
5 10 2 8440 4340 1.94
5 10 21 16880 5410 3.12
5 10 453 14500 8870 1.63
5 10 60214 32230 37170 0.867
5 10 1125443 13830 25940 0.533
10 2 2 560 116 4.8
10 2 21 796 210 3.79
10 2 455 1443 300 4.81
10 2 60214 2343 1070 2.19
10 2 1125443 3413 1836 1.85
10 3 3 1010 1230 0.821
10 3 23 1080 1860 0.580
10 3 453 4510 1830 2.46
10 3 60213 6280 5420 1.15
10 3 1125443 10120 9570 1.05
10 5 3 5790 6600 0.877
10 5 21 20590 7030 2.92
10 5 455 25440 10460 2.43
10 5 60213 39530 30220 1.30
10 5 1125443 32780 66280 0.494
10 10 3 38360 91740 0.418
10 10 23 46560 688240 0.0676
10 10 453 65680 148030 0.443
10 10 60213 301960 295830 1.02
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Discussion

For larger number fields the relative multiplication, for smaller number fields the
absolute multiplication is faster.

6.9 Comparison KASH and gp of modular and nonmodular
relative normal form computations

Aim

There are pseudomatrix normal form algorithms implemented in gp, see [Pari]. By
comparing running times, it is possible to evaluate if the efforts to improve the
efficiency of normal form algorithms have proved to be effective.

Design

The pseudomatrices of subsection 6.4.1 are used. Again the degree of the base field,
the dimension of the pseudomatrix, and the minimal natural number of the relative
ideal which is represented by the pseudomatrix are tabulated.

The column marked “non-mod” refers to the normal form algorithm without reduc-
tion. The column “det-mod” refers to the combined computation time for obtaining
a reducer with the gcd of a few minors and computing the normal form using this
reducer. The column “or-mod” refers to normal form computation with a very good
reducer which is the minimum of the above relative ideal.

All computation times are in milliseconds on a computer with 149000 relidmark.

The following abbreviations are used in the table.
non-mod Using a normal form algorithm without a reducer.
det-mod Using a reducer obtained with minor computations.
mod Using a reducer assumed to be known in advance which is the minimum of

the relative ideal represented by the pseudomatrix. This is not applicable
to gp since a reducer which is an integral multiple of the rank minor gcd is
required for the reduction algorithm.

∞ The computation does not terminate in an acceptable time which is at least 100
times of the time needed by another time the test of a similar difficulty.

overflow A typical message in gp is: “The stack overflows. Doubling the stack
size.” If this message occurs with an initial stacksize of 32MB, which is as
much as the test computer as usually available for a gp process, “overflow”
is tabulated.

error Other error messages, which indicate inconsistencies in the representations
of ideals or algebraic numbers.
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base field degree
pseudomatrix dimension

test ideals over
computation times in ms

KASH gp
non-mod det-mod mod non-mod det-mod

2 2×4 2 10 120 20 10 50
2 2×4 64777 40 150 30 20 40
3 2×4 2 20 180 0 140 error
3 2×4 64777 10 170 20 90 70
5 2×4 2 30 330 20 550 510
5 2×4 64777 50 360 80 390 260
10 2×4 2 750 7990 210 14320 overflow
10 2×4 64777 6960 13160 10 11900 9470
2 3×6 2 40 210 0 80 110
2 3×6 64777 30 260 70 50 110
3 3×6 2 240 330 0 430 error
3 3×6 64777 40 240 50 210 200
5 3×6 2 200 650 90 1790 790
5 3×6 64777 170 640 230 940 690
10 3×6 2 1586160 17730 10 100920 22340
10 3×6 64777 22920 22010 2230 27260 18590
2 5×10 2 60 300 40 320 error
2 5×10 64777 70 420 110 220 270
3 5×10 2 640 610 50 5440 880
3 5×10 64777 520 950 220 1000 790
5 5×10 2 2270 1450 240 8390 2270
5 5×10 64777 ∞ 1600 360 14860 4510
10 5×10 2 270440 21890 90 970400 35590
10 5×10 64777 176250 49080 7240 295670 50010
2 10×20 2 1800 1810 490 23590 1530
2 10×20 64777 1310 1370 650 11590 1270
3 10×20 2 767640 2880 220 80890 error
3 10×20 64777 76640 2460 800 32320 3870
5 10×20 2 200150 5200 1130 951390 error
5 10×20 64777 117700 6730 3900 130140 15650
10 10×20 2 ∞ 83520 1290 ∞ 470480
10 10×20 64777 ∞ 126380 70070 ∞ 210690

Discussion

non–modular method While the implementation in KANT is faster on average
and in more cases there are large runtime differences in both directions.
Large computations suffer from several irregularities:
• Fragmented memory slows down the computation extremely if a larger

part of the available memory is used. This is influenced mainly by the
structural decisions for the memory managemant of the system.

• The behavior of basic algorithms (integer HNF computation, long in-
teger arithmetic) for large numbers becomes much more important for
large examples. The basic algorithms can be implemented in several
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variants none of which is perfect for all examples. The variant chosen
has a great effect of the runtime for the normal form algorithm.

These irregularities affect gp and KANT to a different extent. Therefore the
concept of comparing implementations in different systems with the aim of
comparing algorithms is quite restricted.

modular method with determinant The computation times are quite similar.
non–modular method While not implemented in gp the times for this method

are very small. This stresses the importance to obtain reducers in advance
to the normal form computation which is possible in many applications.



Index
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field, 5
P,S,M, refer to sets
Q , ring of rational numbers
T1–norm, 31
T2–norm, 31
Z, ring of integral numbers
Z(m), 24
a,b,c,d,m,r,p,q, refer to absolute ideals
oK, maximal order of K, 3, 9
Sn, refers to the symmetric group of n

elements
A,B,C,D,E,T ,U, refer to vectors

absolute ideals, 85
algebraic number field, 5
algebraic number rings, 3
approximation

nonnegative, 16

of an ideal, 15

basis presentation of an ideal, 6
best remainder strategy, 63

CHNF, 56
coefficient ideals

of a pseudomatrix, 46
Cohen–Hermite normal form, 56
column equivalence, 39
complete set of prime ideals, 18
complex absolute value, 31

denominator
in an integral domain, 26
mapping, 26
of a pseudomatrix, 81

determinant of a pseudomatrix, 70
different, 9
dual pseudomatrix, 82

elementary matrices, 40
elementary transformations, 47
equivalence

of matrices, 37–39, 44
of pseudomatrices, 46, 47, 55

Euclidean ring, 39, 43

fractional elements, 26
fractional ideal, 5, 6

Gauss–Jordan algorithm, 43

Hermite normal form (HNF), 43
HNF basis reduction, 32

ideal, 5
fractional arithmetic, 6
inversion, 9
minimum, 10
modular arithmetic, 12
multiplication algorithm, 7, 8

idempotents of ideals, 13
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integral
elements, 26
ideal, 5
pseudomatrix, 47

integral domain, 26

lazy localization, 9
lexicographic ordering of

representations, 31
LLL–reduced basis, 35

matrix
represented module, 37

matrix multiplication equivalence
of matrices, 39
of pseudomatrices, 55

maximal natural factor of an ideal, 12
maximal order, 9
minimum (ideal), 10
minor of a pseudomatrix, 70
minor sum of a pseudomatrix, 70
module

generated by a matrix, 37
generated by a pseudomatrix, 46
of pseudomatrices, 81

module equivalence
of matrices, 37
of pseudomatrices, 46

modulo function
in integral domains, 27
rational, 24

modulo relation
in integral domains, 26
rational, 23

multiplicator ring, see [Fri97], 9

norm, 32
of an ideal, 12

normal presentation, 8

preview strategy, 62
primitive element of an ideal, 13
principal ideal, 6
principal ideal domain, 43
pseudomatrix, 45

represented module, 46

quality
function, 29

quality relation, 29
quotient field, 26

rank
minor sum, 71
of a pseudomatrix, 71

reduce function
in integral domains, 28
rational, 25

reduce relation
in integral domains, 27
rational, 24

reduced element, 28
reduction

of pseudomatrices, 74
relative ideal, 84
relative representation

of an algebraic number, 84
rooted T2–norm, 31
row equivalence, 39

Smith normal form, 39
Steinitz forms, 67
subpseudomatrix, 70

transformation equivalence
of matrices, 38
of pseudomatrices, 47

transformations
of matrices, 38–39
of pseudomatrices, 47–48, 51, 53

two–element presentation, 6

valuation
in Dedekind rings, 15
integral, in integral domains, 16

vector norm of the representation, 30

zero column, 38
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